Katja Sagerschnig

Contact Information

Center for Theoretical Physics PAS
Al. Lotników 32/46
02-668 Warszawa, Poland

e-mail: katja(at)cft.edu.pl

I am an assistant professor (adiunkt) at the Center for Theoretical Physics of the Polish Academy of Sciences in Warsaw and a member of the Polish-Norwegian collaboration ``SCREAM: Symmetry, Curvature Reduction, and EquivalenceMethods''. I previously held a POLONEZ grant of the National Science Centre, Poland, and postdoc positions at the Politecnico di Torino, the University of Vienna, and at the Australian National University. I received my PhD in mathematics from the University of Vienna, Austria, in 2008.

My POLONEZ project: Special geometries related to the exceptional group G_2.

Research interests

Differential geometry. In particular, conformal geometry, Cartan geometries and parabolic geometries, geometries of distributions and differential equations, applications of representation theory to geometry.


G. Manno, P. Nurowski, K. Sagerschnig, The geometry of marked contact twisted cubic structures, The Journal of Geometric Analysis (2020).

M. Hammerl, K. Sagerschnig, Josef Šilhan, Arman Taghavi-Chabert, Vojtěch Žádník, Conformal Patterson-Walker metrics, Asian Journal of Mathematics (2019).

M. Hammerl, K. Sagerschnig, Josef Šilhan, Arman Taghavi-Chabert, Vojtěch Žádník, Fefferman-Graham ambient metrics of Patterson-Walker metrics, Bulletin of the London Mathematical Society (2018).

Th. Leistner, P. Nurowski, K. Sagerschnig, New relations between G_2 geometries in dimensions 5 and 7, Int. J. Math. 28 (2017).

K. Sagerschnig, T. Willse, The almost Einstein operator for (2,3,5) distributions, Archivum Mathematicum (2017).

M. Hammerl, K. Sagerschnig, Josef Šilhan, Arman Taghavi-Chabert, Vojtěch Žádník, A projective-to-conformal Fefferman-type construction, SIGMA (2017).

K. Sagerschnig, T. Willse, The Geometry of Almost Einstein (2,3,5) Distributions, SIGMA (2017).

M. Hammerl, K. Sagerschnig, The twistor spinors of generic 2- and 3-distributions, Annals of Global Analysis and Geometry (2011).

M. Hammerl, K. Sagerschnig, Conformal structures associated to generic rank 2 distributions on 5-manifolds-Characterization and Killing-field decomposition, SIGMA (2009).

A. Cap, K. Sagerschnig, On Nurowski's Conformal Structure Associated to a Generic Rank Two Distribution in Dimension Five, Journal of Geometry and Physics (2009).

K. Sagerschnig, Split octonions and generic rank 2 distributions in dimension 5, Archivum Mathematicum (2006).

K. Sagerschnig, Parabolic geometries determined by filtrations of the tangent bundle, Rend. Circ. Mat. Palermo Suppl. ser. II (2006).


My papers on the arXiv.


Weyl structures for generic rank two distributions in dimension five, doctoral thesis, University of Vienna.

Schubert Cell Decomposition and Homology of Generalized Flag Manifolds, diploma thesis, University of Vienna.


Geometry and Differential Equations Seminar
Simons Semester: Symmetry and Geometric Structures


Lecture Course: Symmetries, Geometric Structures and Holonomy