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Summary

The thesis describes the influence of dipolar interactions on the properties of many-body systems

from a theoretical point of view. Its main goal is to analyze the consequences of the interplay

between the local and non-local parts of interactions between atoms. The thesis puts special

attention on stronger interactions beyond the applicability of the usual mean-field approaches. The

presented study focuses mainly on one-dimensional models.

In Chapter 1, we briefly review the history of studies on ultracold gases with emphasis on

dipolar atoms examples. We embed the subjects of the thesis in the context of ongoing research in

the field.

Chapter 2 introduces the theoretical framework needed in the later parts of the thesis. That

includes discussion of some general properties of the many-body systems and two-body interactions

in the ultracold limit. It recalls the well-know mean-field description of ultracold gases.

Chapter 3 presents properties of two dipolar atoms moving in a harmonic trap without an

external magnetic potential. It is possible to adiabatically pump the system from the s-wave to the

d-wave relative motion.

Chapter 4 compares the mean-field dark solitons and the lowest energy states for fixed total

momentum of the corresponding many-body system of weakly interacting bosons. The bosonic

symmetrization is responsible for emergence of solitonic features even in the limit of vanishing

interactions.

Chapter 5 studies bosons interacting via attractive short-range and repulsive dipolar forces. It

shows that the lowest excitations of the system may be smoothly transformed from the typical states

of collective character to the celebrated roton state by simultaneous tuning short-range interactions

and adjusting a trap geometry.

Chapter 6 describes a transition between droplet-like and bright soliton-like states at the border

of net attractive and repulsive interactions for a small number of atoms and strong interactions.

Based on that, it introduces a new version of the Gross-Pitaevski equation.

Chapter 7 presents a microscopic model of two-body wave function diagnosis based on atom-

light interactions. In particular, it discusses the influence of pulse properties on the absorption of

photons by two identical atoms moving in a trap.

The last Chapter 8 summarizes the thesis and outlines some possibilities of extending the

presented results.
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Chapter 1

Introduction

The very �rst encounter with quantum physics blurs the classical concept of an atom almost

literally. A billiard ball picture gives way to a nonintuitive wave-particle duality description. The

second strike to an enthusiast of the quantum theory comes from the fact that within it all particles

are indistinguishable. This gives rise to quantum particle statistics predicting bosons (integer spin

particles) and fermions (half-integer spin particles).1

As in the classical world, but with new dif�culties mentioned above, quantum physics branches

into two main categories of phenomena: the one-body problem and the many-body problem. Indeed,

all two-body models reduce to the former by the center of mass separation. Moreover, in some

cases, the picture of a single atom immersed in the �eld produced by the rest of the particles well

represents the most important properties of a system with a large number of particles. We call such

a regime the mean-�eld regime. Usually, the three-body problem is already intractable analytically,

not to mention the system with dozens of atoms.

The efforts in this thesis swirl around the many-body problems in the context of ultracold

dipolar atoms. Owing to the recent experimental advances, it is now possible to probe these

complex systems. Still, there is a lot to do from both theoretical and experimental perspectives.

1.1 Ultracold gases and Bose-Einstein condensate

Owing to wave-particle duality every particle with a momentumk is associated with a matter

wave characterized by its wavelength dubbed de Broglie wavelength� dB = h
k . For any massive

body (with massm) in an ensemble with equilibrium temperatureT, it reads

� dB =

s
2� ~2

mkBT
(1.1)

The number of atoms occupying the volume element� 3
dB , known as the phase space density, is

v = n� 3
dB with n denoting the number density. It is small for gas in the room temperature, but as

we see from Eq.(1.1), decreasing temperature makes the phase space density growing. At some

point,v � 1, the spatial extent of the wavepacket becomes of the same order of magnitude as the

1Note, that in two dimensions also anyonic statistics may appear.
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average distance between atoms. Accordingly, the system stands in the gate of the realm of the

degenerated quantum gas, where the quantum statistics starts to play a crucial role. We are going to

focus on Bose gases leaving the introduction to the degenerate Fermi gases to extensive reviews,

see for instance [1] and references therein.

(Probably) every physicist knows (or should know) about the historical origins of the Bose-

Einstein statistics [2]. In the letter to Albert Einstein in 1924, Satyendra Nath Bose derived Planck's

empirical formula for black-body radiation evoking to the concept of indistinguishable photons.2

With Einstein's blessing and translation to German, the paper was published and then followed by

its generalization for massive particles in the ideal gas done by Einstein. In Einstein's second paper

on the subject [5], he envisaged that when the phase space density exceeds a critical value, for the

ideal gasvcr � 2:612, almost all bosons would occupy the lowest single-particle state. Therefore,

a many-body system would behave, no matter how big it would be, like a single particle. The

same way as for the laser, the purely quantum effect leads to macroscopic coherence. Note, that

Bose-Einstein condensation is a peculiarity of the quantum statistics only.

At �rst, considered as a minor theoretical curiosity at times of early quantum mechanics

development, BEC was brought back into the scienti�c discussion by London and Tisza in the

context of super�uidity [6, 7]. Over the years, BEC phenomenon was also studied in a diversity

of topics in condensed matter, subatomic physics, and astrophysics, including superconductivity

or neutron stars [8]. A lack of BEC experimental realization became an obstacle in further

investigations.

One can reach the critical phase space density of gas only in the limit of extremely low (high)

temperatures and real-space densities. Densities of the neutron stars are impossible to access in

terrestrial laboratories. On the other hand, we expect a solid state rather than a gas in the ultracold

limit even for a weakly interacting one as the ideal gas does not exist in nature.3 Probability of

three-body recombination process, responsible for solidi�cation, scales asn3, whereas two-body

scattering yielding thermalization occurs with a rate proportional ton2. A gaseous probe has to

be �ve orders of amplitude more dilute than the air to overcome recombination. In that case, one

needs to cool the probe under1� K to achieve the critical phase space density of BEC and to devise

smartly a container of gas, because containers made of material could disrupt cooling. These tight

requirements resulted in enormous advances in the �eld of cooling and trapping atoms [9–11].

Finally, the �rst BEC was observed in 1995 opening a new era in ultracold physics [12, 13]. Then,

observation of Feshbach resonances [14] and mastery in using them enhanced a number of new

experiments with BEC greatly. We refer the reader to excellent and comprehensive reviews devoted

to the development of the �eld, for example [15–17], to name only few. Nowadays, the ultracold

gases serve as a versatile test-bed for different theories in many other �elds of physics like condense

matter and also as an upgrade of technologies based on quantum mechanics like quantum metrology,

quantum computers or atomic clocks [18].

2The concept of the indistinguishable particles was considered for the �rst time by W�adys�aw Natanson in [3, 4] in
1911. However, these works did not formulate the statistic itself and did not go down in a broad scienti�c discourse.

3Even if the ideal gas had existed in reality, it would have not thermalized. To cool down a system, one needs
interactions.
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Although Goral et al. in [19] provided with the �rst theoretical description of condensate

with long-range dipolar interactions in 2000, the early BEC experiments were conducted with

elements that effectively interact only short-range and dipolar forces were negligible.4 With a

pioneering condensation of52Cr [23, 24] followed by 164Dy [25], and 162Dy and 160Dy [26]

and168Er [27] much of the physics was enhanced as these elements posses signi�cant permanent

magnetic moments (6-10� B ) while for instance87Rbonly 1� B . A comprehensive review on the

�rst experiments with dipolar BEC, including observation of the �rst quantum ferro�uid [28], is

written by Lahaye et al. [29]. A lot of work with dipolar atoms was also done in the context of

optical lattices simulating different models from condensed matter, for instance in [30–32] and

references therein. Precise control over the strength of short-range interactions allows studying

thoroughly the interplay between them and long-range dipolar interactions. In a recent series

of groundbreaking papers, self-bound dipolar droplets [33, 34], as well as roton excitation [35]

followed by the detection of dipolar supersolid were reported [36–38]. Dipolar systems have still

many to reveal. We need ongoing theoretical effort to properly describe those systems because they

pose a lot of dif�culties as dipole-dipole interactions are anisotropic and long-range. Now, we will

describe them brie�y following the review paper by Lahaye et al. [29].

1.2 Dipolar interactions

The general form of dipole-dipole interaction (DDI) in the absence of an external magnetic

�eld reads:

Udd(r ) =
Cdd

4�
(e1 � e2) r 2 � 3 (e1 � r ) (e2 � r )

r 5 ; (1.2)

whereei denotes the orientation of dipolei andr is a vector joining two dipoles withr = jr j.

The strength of dipole interactionsCdd depends on whether dipoles are magnetic or electric. For

magnetic atomsCdd = � 0� 2 with � 0 being the vacuum permeability and� is a magnetic dipole

moment (see [29] for values for different elements) depending on the total spin of an atom (see

Chapter 3.2). For electric dipolesCdd = D 2

� 0
with D being electric dipole moment and� 0 is the

vacuum permittivity.5

In most experiments with ultracold physics, a strong external magnetic �eld is applied to the

probe in order to trap particles. Atoms are polarized ande1 = e2 accordingly. In that scenario, the

DDI can be written as

Udd(r ) =
Cdd

4�
1 � 3 cos2 �

r 3 ; (1.3)

where� is the angle between the direction of polarization and the relative position of the particles. In

Fig. 1.1 a) and b) from [29] we see a schematic view of dipolar interactions showing its anisotropic

nature. Mathematically DDI are long-range in 3D and non-local in lower dimensions (for detailed

discussion see [39]).

4However, the dipolar interactions, even comparably small, turned to be crucial in understanding the physics of the
87Rb F = 1 spinor BEC [20–22].

5In this Thesis, we focus solely on magnetic atoms. See [29] to learn more about polar molecules, Rydberg atoms
etc.
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In a constrained geometries polarized dipoles may be ordered in any con�guration between two

limiting con�gurations: repulsive side-by-side con�guration with� = �
2 and attractive head-to-tail

con�guration with � = 0 (see Fig. 1.1 c) and d) respectively). We remind, that for� � 54� the

DDI vanish.

We will see in Chapter 3, that the DDI couple internal (spin) and external (orbital) degrees of

freedom. A celebrated example of this is the Einstein-de Haas effect. In the original version of the

experiment [40], the authors observed how a ferromagnetic cylinder suspended on a thin string

rotated around its own axis after the applied magnetic �eld had changed. The system reacted to the

�eld change by changing the orientation of the magnetic moments in the atoms (the projection of

the spin component changed). The rotation of the system is a simple result of the total momentum

conservation. In Chapter 3 we will return to this phenomenon in the context of ultracold gases.

Figure 1.1: Dipole-dipole interactions. a) Non-polarized case. b) Polarized case. c) Repulsive
side-to-side con�guration. d) Attractive head-to-tail con�guration. All rights reserved [29]

1.3 Ultracold gas in lower dimensions

As we pointed out earlier dipolar BECs introduced a new twist to the �eld of ultracold gases. A

plethora of experiments and theoretical results in three dimensions both for dipolar and alkali gases

do not drain all possibilities. Now, we restrict the dynamics of an ultracold gas to one dimension.6

In experiments, one can tightly con�ne the gas in chosen directions (see also Chapter 2.2.2). In the

next section, we will discuss three physical phenomena, which are particularly important in the

context of this Thesis.

6In one dimension there is no actual BEC according to the modern de�nition of the BEC state for interacting
gases given by Penrose and Onsager in 1956 [41]. However in general, in the limit of ultra-low temperatures and weak
interactions, the one-dimensional many-body system ful�lls criteria for the mean-�eld description with the GPE.
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The most common way to describe a BEC in the vicinity of zero-temperature is by the integro-

differential Gross-Pitaevskii equation (GPE) [42, 43]

i~@t  GPE (x; t ) =
�

�
~2@2

x

2m
+ N

Z
dx0Ue� (x � x0)j GPE (x0; t)j2

�
 GPE (x; t ); (1.4)

whereUe� is an effective potential in the ultracold regime with both local and non-local interactions

described in Chapter 2.2. In the context of atoms it is the so called mean-�eld (MF) description

of the weakly interacting bosons [44]. We will brie�y derive this equation in Chapter 2.5.1. The

mean-�eld description of an ultracold system in one dimension provides with an inexhaustible

wealth of theoretical outcomes and experimental hints about the properties of ultracold gases. It

would be almost impossible to list them all in the �nite framework of this thesis. However, we

compactly introduce and discuss topics that will arise in the later Chapters.

Soliton It is hard to list all important features, discoveries and applications associated with

solitons. These mathematical objects, certain types of solutions of nonlinear integrable differential

equations, were found in many areas of Science, ranging from physics to biology and medicine.

There is a number of known equations supporting the solitonic solutions. In physics, very important

Figure 1.2: Sketch of density (left) and phase (right) of dark solitons in a box with periodic boundary
conditions. The solid red lines correspond to the extreme situation of a black soliton - its density
vanishes at the center, whereas the phase has a� jump. The blue dashed lines correspond to an
example of a gray soliton with the minimal density0:36. Position is in the box units (see Chapter
4).

examples are the Korteweg-de Vries equation [45], Sine-Gordon equation [46, 47] and the GPE.

Here, we focus on the contact interacting gas whereUe� (x) � � (x) wih the corresponding GPE:

i~@t  GPE =
�

�
~2@2

x

2m
+ gN j GPE j2

�
 GPE (1.5)

whereg is the coupling strength (see Chapter 2.2.1). This equation has also proved to be useful to

describe the electric �eld of light in the non-linear media [48].

The solitonic solutions of Eq.(1.5) were derived already in the 70s by A. Shabat and V.

Zakharov [49, 50]. We recall the main �nding for the positive coupling strength,g > 0. In this

case the spatial density in the soliton has a single characteristic notch. Within the area of the notch
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the phase of GPE is quickly changing. In the extreme situation, the density in the middle of the

soliton is zero and the phase has a� jump. The width of the soliton is given by the healing length

� = 1=
p

gn. The properties of dark solitons are illustrated in Fig. 1.2. Shortly after cooling atoms

down to the Bose-Einstein condensate regime, also the solitons have been generated [51–53]. In the

present days solitons are routinely produced with the phase imprinting method in many laboratories

around the world. In this Thesis, we will discuss the Lieb-Liniger model underlying the dark

solitons in a BEC phenomenon in Chapters 2.3.1 and 4.

Recent �ndings of groups from Poland and Great Britain [54–56] shows that some solutions of

the GPE with dipolar interactions also displays features of dark solitons. However, the GPE in this

scenario is not integrable, which affects vastly the dynamics and properties of the system.

In the attractive case withg < 0 a solution to Eq. 1.5 takes a form of bright solitons. They have

a sech-shaped pro�le and they are more common in nature than dark solitons. As in the dark soliton

case, there exists a dipolar analog of the usual bright soliton with many similar properties. We refer

the reader to [57] for a very comprehensive introduction to solitons in ultracold gases.

Rotons In the contact interacting ultracold gas low-lying excitations described by the Bogoliubov

approximation feature phonons and free-particle only. A bit different situation takes place with a

dipolar gas where the roton minimum may appear. Before we refer to the rotons in an ultracold gas,

we present a brief history of this excitation in the context of experiments with ultracold Helium.

In the 30s of the last century, Allen and Misener [58] and Kapitza [59] discovered unusual

properties of the Helium-II followed by �rst theoretical attempts in explaining them [6, 7]. The

qualitative theory of super�uidity is due to Landau [60–62]. He deduced from the measurement of

the speci�c heat [63] and the second sound velocity [64] that the excitations in the Helium-II must

have a peculiar spectrum [62] with the local minimum dubbed "roton". Later Feynman alone [65]

and with Cohen [66] formulated the very �rst, yet semiquantitative microscopic model explaining

the origin of this local minimum. Finally, in Helium the roton was observed experimentally [67],

but rather unsatisfactory agreement between theory and measurement suggested that the exact

nature of the rotonic excitation was still missing. It was �nally understood many years later by

means of subtle ansatzes for the roton's wave function [68, 69]. The existence and properties of

the roton were also discussed in depth in studies of excitations of thin liquid-helium �lms [70–72].

It should be emphasized that liquid Helium-II is a strongly correlated (with a small condensate

fraction) system, where roton's characteristic momentum scales as the interatomic distance. There

are still active studies of the roton state in this regime [73].

At the beginning of XXI century the roton-maxon spectrum was predicted in completely

different physical system – trapped dipolar gas of polarized ultracold atoms. The nature of the roton

in ultracold gases is very different than the one in Helium (see [74] for detailed discussion). Here

it is induced by the interplay between the long-range forces and a steep external potential in the

polarization direction [75, 76]. Without an external potential the system is unstable, as the dipoles

would �rst tend to the head to tail con�guration and then they will just fall on each other due to

the attractive part of the dipolar interaction. The system may be stabilized by the steep external

potential, which blocks the motion in the direction of the dipoles' polarization. Roton emerges
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Figure 1.3: Sketch of a typical dispersion relation with a roton minimum in a trapped ultracold
dipolar gas. The position and depth of the minimum can be tuned in the experiments [38]. Energy
and momentum in the box units introduced in Chapter 5.

for parameters close to collapse, for which dipoles are close to overcome the trapping forces. In

this situation atoms cluster into 'clumps', regularly separated by a period corresponding to inverse

of the roton momentum [77]. This happens for relatively weak interactions, for which the system

is in the Bose-Einstein condensate state. Therefore, one can use the mean �eld or Bogoliubov

description and �nd the roton state as a Bogoliubov quasi particle [75–94]. The dispersion curve

of such systems is related to a speci�c k-dependence of an effective interaction potential rather

than to strong correlations. Possibility of changing the particles polarization as well as almost

free tuning of the short range interactions combined with the trap geometry modi�cations enables

unprecedented �exibility in the study of the roton spectrum in dipolar gases ending with a recent

experimental con�rmation of the phenomenon [35].

Droplet Recent experiments with highly magnetic dipolar atoms discovered a new self-bound

liquid state for atom number densities that are108 lower than in a helium liquid. The existence of

such dilute droplets was suggested earlier in the context of Bose-Bose mixture [95]. In the very �rst

experiments, the three-dimensional condensate with long-range magnetic dipolar interactions and

tunable short-range interactions was quenched into the unstable regime from the MF perspective

i.e. attractive and repulsive forces were of the same order and almost canceled out each other.

A gas formed a spatially ordered collection of stable droplets with a higher density than usual

condensate [96–98]. These quantum droplets are self-bound i.e. they are stable even without any

external trapping potential [33, 34, 99, 100]. One has to include beyond mean �eld Lee-Huang-

Yang (LHY) correction, which scales asn3=2, into the GPE which provides an additional effectively

repulsive term preventing the gas from collapsing to describe the droplet theoretically. The LHY

correction for dipoles is much stronger and includes some additional subtleties compared to contact

interactions [78, 101–103]. Note, that in the dipolar community there is an ongoing discussion
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whether LHY corrections account for all properties of droplets. In a new paper [104], the authors

argue about that hypothesis.

In the case of Bose-Bose mixtures droplets were also predicted in lower dimensions [105] on

the same footing of LHY corrections, which has a different form for 1D and 2D systems. For

dipolar atoms, the calculations are not as straightforward. In two dimensions the LHY term is

nonuniversal [106], whereas for one dimension it was calculated numerically for some parameters

of the system [107]. Additionally, an analog of droplets stabilized by LHY term exists in the

so-called Tonks-Girerdeau limit [108] (See Chapter 6), where the contact interactions are in�nitely

strong.

1.4 Many-body physics

It is possible to study many-body systems in modern experiments with ultracold gases distributed

between the wells of an optical lattice [16]. This way, with a help of tunable parameters of

interaction, using the Feshbach resonances [14, 109], and the properties of the lattice itself, one can

access in a controlled way vital models of condense matter physics - for a recent review see [31].

Usually, such systems interact strongly. One needs an actual many-body description encoding the

information about all the correlations between particles, instead of the MF theory accounting for

mutual correlations between particles only partially by nonlinearity in a corresponding GPE.

Modern experiments entered also into the one-dimensional realm due to the cigar-shaped traps.

As the role of interactions in one dimension is special and tools from higher dimensions do not

necessarily apply for stronger interactions, theorists have been developed different techniques and

concepts [110]. Many one-dimensional problems were solved by means of Bethe Ansatz (for a

review see [111, 112] and references therein). The historically earliest example is the famous Lieb-

Liniger model [113, 114] comprising ofN contact interacting bosons moving on the circle (see

Chapter 2.3.1). Their seminal analytical solution predicts two branches of elementary excitations,

which was also observed experimentally [115, 116]. There is the puzzling link between the mean-

�eld solitons introduced in Section 1.3 and solutions of the underlying many-body Lieb-Liniger

model. More than a decade after the seminal paper of Lieb, a coincidence between the dispersion

relations of dark solitons and of so called type-II elementary excitations from the many body

description [117, 118] has been noticed. The further relations between type-II eigenstates and

solitons were presented in [119–127].

Little is known about the classi�cation of the exact many-body eigenstates in one-dimensional

dipolar gas. For (quasi)-1D model with bosons interacting only by repulsive dipolar interactions the

lowest energy states resemble rather type- II excitations known from the Lieb-Liniger model [128].

The picture gets vague even more if one adds the short-range interactions to the �nal mix. Particu-

larly interesting questions appear about the relationship between many-body eigenstates for such a

system and the corresponding approximated theory.
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1.5 Thesis overview

The main goal of this thesis is to contribute to the better understanding in�uence of dipolar

interactions on the many-body systems in constrained geometries. A lot of condensed matter

theories simulated in one-dimensional optical lattices deals with a very small number of particles

trapped in a single well. We will put special attention to stronger interactions that require an

extended description beyond the usual mean-�eld approaches. In the end, we will also check the

applicability of the standard measurement methods used for large systems in the case where only a

few atoms are present in a probe. Without doubts, the dipolar and many-body physics abounds in

many interesting phenomena and only a few topics are studied in this dissertation. We organize the

work in the following way:

� In this chapter, we present a brief review of ultracold physics with emphasis on dipolar

examples. We start with some basic facts about BEC. Then, we shortly discuss dipolar

interactions and their consequences. We mainly focus on one-dimensional examples. Finally,

we brie�y recap some many-body aspects important from the perspective of this thesis.

� Chapter 2 introduces the basic concepts and methods used in the later course of this thesis. We

discuss some general properties of the many-body system and two-body interactions, mainly

in the context of one-dimensional problems. Finally, we recall the mean-�eld description of

ultracold gases.

� In Chapter 3, we investigate two dipolar atoms moving in a harmonic trap without an

external magnetic �eld. In particular, we study the anisotropic characteristic of dipolar forces.

Namely, we show that the internal spin-spin interactions between the atoms couple to the

orbital angular momentum causing an analog of the Einstein-de Haas effect. It is possible

to adiabatically pump our system from the s-wave to the d-wave relative motion. We also

observe anti-crossings of energy levels.

� Chapters 4-6 focuses on atoms moving on the circumference of a circle. In particular, we

devote Chapters 5-6 to the study of the interplay between local and non-local interactions

for different polarization of dipoles in that geometry. We dedicate Chapter 4 for comparison

between mean-�eld dark solitons and the lowest energy states for �xed total momentum

of the many-body system of weakly interacting bosons for either contact or purely dipolar

interactions. Solitonic features like phase jumps and density notches emerges even in the limit

of vanishing interactions. We show that these properties are simply effects of the bosonic

symmetrization whose consequences we study in dynamics and systems where interactions

are relevant.

� In Chapter 5, we study bosons interacting via attractive short-range and repulsive dipolar

forces (side-to-side con�guration) both in weakly interacting regime as well as the regime

beyond the range of validity of the Bogoliubov approximation. We show that the lowest

energy states with �xed total momentum can be smoothly transformed from the typical

states of collective character to states resembling single-particle excitations, in particular, the
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celebrated roton state. We realize transition by simultaneous tuning short-range interactions

and adjusting a trap geometry.

� Chapter 6 concentrates on studying the ground-state ofN bosons interacting via repulsive

short-range and attractive dipolar forces (head-to-tail con�guration). Notably, we observe a

transition between droplet-like and bright soliton-like states at the border of net attractive and

repulsive interactions for a small number of atoms and stronger interactions. In the second

part, we propose a new version of the GPE without LHY corrections for larger systems. We

provide with a diagram showing novel droplet-soliton transition.

� In Chapter 7, we investigate a very simple microscopic model of two-body wave-function

diagnosis based on atom-light interactions. We study an absorption of a weak pulse by two

identical atoms moving in a trap. Especially, we study the in�uence of pulse properties on

the results. We report a signi�cant impact of pulse duration on the resulting one-photon and

two-photon absorption probabilities.

� Chapter 8 recaps the thesis pointing out its main achievements. In the end, we discuss future

perspectives concerning the results presented in this dissertation.
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Chapter 2

Theoretical framework and methods

In this Chapter we introduce basic theoretical concepts and analysis methods used in this thesis.

We start with a few general properties of a many-body bosonic system. Then, we shortly discuss

two-body interactions- short-range potential in an ultracold limit and dipole-dipole forces in a 1D

space. After that, we turn our attention to atoms moving on a circumference of a ring as it is the

main geometry considered in this thesis. We recall the seminal Lieb-Liniger (LL) model and shortly

discuss the ideal gas spectrum afterward. Finally, we present methods used in this thesis to access

spatial properties of a many-body system on a ring.

In the second part of this Chapter, we brie�y discuss the mean-�eld description of ultracold

bosons. We recall the famous Gross-Pitaevskii equation (GPE) describing a macroscopically occu-

pied orbital. Some of the energetically low excitations of the ultracold gas are aptly characterized by

the well-known Bogoliubov approximation. Here, we present a version of it with the conservation

of particles number.

2.1 General properties of many-body systems with two-body

interactions

2.1.1 Many-body Hamiltonian in second quantization

We examine bosonic systems, which consist of N atoms. Any state vector describing such

system is symmetric under exchange of any two particles. In the framework of second quantization,

one uses a Fock state representation instead of a full many-body wave-function N (x 1; :::; x N )

with x i standing for the position of ani -th particle. A single Fock state is usually expressed as

j f ngi i = jn0; n1; :::i whereni is an occupation number of a single particle state� i (x ) from a

proper single-particle basisf � i (x )g. We study only models in which the number of atoms is

conserved,
P

i =0
ni = N . All vectorsj f ngi i form an orthonormal basisfj f ngi ig for a symmetric

subspace with �xedN of the Fock space. In this language, a general bosonic state withN particles

is a superposition of Fock states, namely:

j	 i =
X

i

ci j f ngi i (2.1)
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with ci standing for the expansion coef�cients.

We assume systems considered in this thesis dilute and ultracold. Therefore, we can restrain

interactions in our analysis to only two-body level1 and only use a simpli�ed version of the

interaction potential. The presence of ultra-low temperatures also justi�es our interest in the lowest

eigenstates of the system in the later parts of the thesis.

In this case, the many-body Hamiltonian in second quantization can be expressed in space

representation as

Ĥ =
Z

dx  ̂ y(x )Ĥ1 ̂ (x ) +
1
2

Z
dx

Z
dx 0 ̂ y(x ) ̂ y(x 0)U(x � x 0) ̂ (x 0) ̂ (x ); (2.2)

where ̂ (x ) ( ̂ y(x )) are the standard Bose �eld anihilation (creation) operators de�ned as

 ̂ (x ) =
X

i

� i (x )âi (2.3)

 ̂ y(x ) =
X

i

� �
i (x )ây

i (2.4)

with âi (ây
i ) bosonic anihilation (creation) operators. We remind that the Bose �eld operators obey

the following commutation relation
h
 ̂ (x );  ̂ y(x )

i
= � (x � x 0): (2.5)

The single particle Hamiltonian can be written in general as

H1(x ) = �
~2

2m
r 2 + U1(x ); (2.6)

wherem stands for a single particle mass andU1(x ) for the external (including trapping) potential.

In this thesis we mainly study the interplay between short-range and long-range interactions,

therefore two-body interaction potential can be decomposed asU(x � x 0) = USR(x � x 0) +

ULR (x � x 0). We return in shortly to discuss speci�c forms of potentials considered in this work.

2.1.2 Average energy

We want to express the average energy of any state of the systemj	 i described by Eq. 2.2. We

assume the absence of any external potential,U1(x ) = 0 , that holds for most of the cases in this

thesis. By straightforward calculation ofh jĤ j i , one can show that it equals to

D
Ĥ

E
= �

~2

2m

Z
dx h ̂ y(x )r 2 ̂ (x )i +

1
2

Z
dx dx 0G2(x ; x 0)U(x � x 0); (2.7)

where

G2(x ; x 0) := h	 y(x )	 y(x 0)	( x 0)	( x )i

1Note, that even in this regime sometimes it is necessary to include three-body or even more complicated interactions
into the considerations, for example near the collapse of BEC.
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is the second-order correlation function. The �rst term in Eq. (2.7) has more familiar interpretation

in the momentum space, where it can be written as:

~2N
2m

Z
dkk2P(k)

with P(k ) = 1
N ĥay

k âk i , calculated in momentum space, standing for a probability of �nding an

atom with a momentumk. From the above we see the important role ofG2(x ; x 0) andP(k) in a

quantum state characterization.

2.2 Two-body interactions

Actual interparticle interaction potential, depends on many microscopical details e.g. type

of atomic element, the internal quantum state of an atom or type of con�nement trapping atoms,

to name only a few. Depending on scienti�c community the most popular choices include Aziz

potential, Lenard-Jones potential, van der Waals potential, hard-sphere potential, gaussian potential

and many different.

In this thesis, we mainly focus on physical phenomena introduced by dipolar forces between

atoms with a permanent magnetic (electric) moment themselves or by the interplay between them

and short-range interactions. We brie�y present both of them in the following subsections.

2.2.1 Short-range interactions

We are entitled to consider only interactions on a binary level due to the diluteness of an

ultracold gas. In standard experiments with quantum gases, a peak number density is typically

aroundn � 1020 m� 3 (�ve orders of magnitude smaller than in the air). A typical distance between

particlesl is larger than the characteristic range of interactionsr :

r � l = n� 1
3 =

�
N
V

� � 1
3

(2.8)

whereV is the total volume of a system. We assume non-zero interactions only if any two atoms in

an ensemble approach each other a distance smaller thanr . Moreover, in the ultracold gases regime

i.e. the low energy regime, the typical single particle momentumk is very small, namely:

k �
~
r

(2.9)

Outcomes of the scattering theory describing accurately properties of two-body interactions simplify

under the above conditions. For all models of local (not dipolar etc.) interparticle interactions the

only nonvanishing contribution to the scattering amplitude comes from the s-wave channel and it is

characterized by a singlek-independent parameter, the scattering lengthas. Then, instead of using

the actual potential one can consider a delta function pseudo-potential

Ups(x ) = g3D � (x ); (2.10)
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where

g3D =
4� ~2as

m
: (2.11)

In the literature, one can �nd many different studies on different systems with interactions given

by Eq. 2.10 eg. the Lieb-Liniger model that we describe later in this Chapter. Before that, we want

to mention a few remarks about this useful, yet simpli�ed effective potential model.

1. Note, that the scattering length fully determines low energy properties of the true potential. It

shows whether the net local interactions are repulsive (as > 0) or attractive (as < 0). One can,

in principle, calculate the unique value of the scattering length for any real atom/molecule.

It is called the background scattering lengthabg. It requires to include all details of true

potential making its calculations a dif�cult and a demanding task. Note, that there exist

species withabg < 0, eg. Lithium. The scattering length also depends on the dimensionality

of the system.

2. The real advantage of ultracold gases as a tool to test concepts from different �elds of physics

is associated with the existence of the phenomenon known as the Feshbach resonances

predicted theoretically in the 70s. It allows tuningas in experiments to any desired value

including �ipping its sign. Starting from 1998 applying the Feshbach resonance is a standard

implement in the experiments with quantum gases.

3. In the case of 3D problems within the many-body approach, eg. the exact diagonalization,

Eq. (2.10)would fail in the prediction of the system properties. The best known example

was given in the case of two ultracold atoms in the seminal paper by Bush et al. [129]. One

has to use the regularized version of Eq.(2.10). In lower dimensions, one does not need such

regularization.

4. Atoms scattering in the presence of an external con�nement introduces corrections to the

scattering length and the con�nement induced resonance [130, 131]. The scattering length

becomes a function of con�nement parameters. In Chapters 5 and 6, we only include very

simple correction to the value of the scattering length that is given by the normalization factor

of the wave function Ansatz in the direction of tight con�nement.

5. The scattering theory shows that in the case of dipolar interactions all partial waves, not

only s-wave, contribute to the scattering amplitude. Thus, the pseudopotential from Eq. 2.10

cannot be used. The above unhide the long-range nature of dipole-dipole interactions.

2.2.2 Dipolar pseudo-potential

In Chapters 4-6 we discuss the case of polarized atoms for which the dipolar potential takes the

form from Eq. (1.3):

Udd(x 1 � x 2) =
Cdd

4�
1 � 3 cos2 �

jx 1 � x 2j3
; (2.12)
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where� is the angle between the direction of polarization and the relative position of the particles.

We also con�ne atoms by a tight harmonic potential:

U1(x; y; z) =
1
2

m! ?
�
y2 + z2�

(2.13)

The space in̂x direction is assumed to be in�nite. Then, assuming that inŷ andẑ direction any two

atoms are in the ground state of the harmonic oscillator, a two-body wave function reads:

	 ( x 1; x 2) = � 0(z1)� 0(z2)� 0(y1)� 0(y2)	( x1; x2); (2.14)

where� 0 is the Gaussian wave function:

� 0(y) =
�

1
�l 2

?

� 1=4

exp
�
� y2=(2l2? )

�
(2.15)

with l? =
p

~=(m! ? ) being the transverse oscillator width. The necessary condition underlying

this approximation is that both, the thermal energykBT and the interaction energy in̂x dirtection,

are much below the energy of the �rst excited state in the transverse direction. Under the above

approximation, we can reduce full three-dimensional dipolar potential (as well as contact potential)

to the effective one-dimensional dipolar potential. Formally, it can done by integrating out 'freezed'

degrees of freedom:

Udd(x1 � x2) =
Z

dy1dy2dz1dz2 � 0(z1)� 0(z2)� 0(y1)� 0(y2)Udd(x 1 � x 2) (2.16)

The expression given by Eq.(2.16)can be calculated in several steps including switching to centre

of mass and relative coordinates, using polar coordinates and a proper change of variables [56, 132–

134]. Finally, the effective potential in real space is expressed by

Udd(x) = ~Cdd

�
udd (x=l? ) +

8
3

� (x=l? )
�

(2.17)

where

udd(u) = 2 juj �
p

2� (1 + u2)eu2=2Erfc
�

juj=
p

2
�

(2.18)

with a condition
R 1

4udd(u)du = 1 and

~Cdd =
Cdd (1 + 3 cos (2� ))

32�l 3
?

(2.19)

Hereafter, we absorb the contact interaction term from Eq.(2.17)to short-range pseudo-potential

from the previous subsection 2.2.1, i.e.Udd(x) = ~Cddudd (x=l? ). In Fig. 2.1 from [54] we present

the most important features ofudd(x) (Cdd > 0). For large distancesx it behaves like1
x3 and its

characteristic range (width at half maximum) scales likel? . Note, that from the mathematical point

of view the effective dipolar potential in 1D is non-local rather than long-range.

The Fourier transformF [�] of the Eq. (2.17) reads [57]:

Vdd(k) = 4 ~Cdd

�
k2l2?

2
ek2 l2? =2E1

�
k2l2?

2

�
�

1
3

�
; (2.20)

where~k is the momentum associated with thex̂ direction andE1(x) is the exponential integral.
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Figure 2.1: Effective potential in position representation. Here,Ve� / udd . For large distancesx it
behaves like1

x3 and its characteristic range (width at half maximum) scales likel? . (Copyright
IOP Publishing. Reproduced by permission of IOP Publishing. All rights reserved [54])

2.2.3 The effective potential. Realistic vs. periodic

As we replace the ring with a box with periodic boundary condition, the effective interaction

potential used in Chapters 4-6 is only approximate model of the physical interactions. In reality

particles trapped in the ring-shaped potential would interact via interaction potential depending on

the shortest distance between them, the length of a chord. We explain the qualitative differences,

between the physical interaction potential and our model in Fig. 2.2. Below we give details how

our modelUe� (x) arises, and compare it with the real potential. We use the symbolU for the

potentials in the position representation andV for potentials in the momentum space. Below we

denoteU1D = USR + Udd .

In a real experiment, when space needs to be �nite, atoms are trapped in the ring shaped

potential (as we want to avoid breaking translational invariance). Therefore they interact via

potential depending on the length of the chord (see left panel in Fig. 2.2):

Uring (x) = U1D

�
L
�

sin
� �x

L

� �
(2.21)

In this thesis, from technical reasons, we model such situation by a box of lengthL with periodic

boundary conditions. We introduce effective potential, which includes interaction with all imaginary

copies of system:

Ue� (x) =
X

n2 Z

U1D(x + nL ) (2.22)

Therefore, the effective potential in momentum representation isVe� (k) =
RL

0 e� ikx Ue� (x)dx

(which satis�esVe� (k) = F (U1D)(k) as well).

In all cases of this thesis, our approximation of the effective potential is well justi�ed. A

suf�cient condition isl � L . In Chapter 5.A we will show a comparison between both approaches.
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Figure 2.2: Schemes to discuss the relations between the real potential (left panel) and our ap-
proximation (right panel). Physically, the interactionUring between two atoms depends on the
shortest distance between them, i.e. the length of a chord. From technical reasons we approximate
the ring with a box with periodic boundary conditions. In consequences the atoms in our model
interact along the short and long arcs connecting them. As we use in computation the Fourier
transform there are small contributions to the interactions energy coming from the copies of our
system shifted by the multiple of the length of the circleL . The resulting potential is denoted as
Ue� . As discussed below, the differences between the real interaction potentialUring and our model
Ue� are very small.

2.3 Atoms moving on a circumference of a ring

In this thesis, we mostly deal with �nite size systems. One of the most common choice of

a boundary for a problem is Periodic Boundary Conditions (PBC). In (quasi)-1D systems this

may be seen as equivalent to a ring not only for the ideal gas case or point-like interactions but

also to nonlocal interactions, in particular, dipole-dipole forces as in this thesis. The PBC implies

translational invariance of the system, therefore the total momentum of the system consisting ofN

atoms

K̂ = � i~
NX

i =1

@
@ xi

(2.23)

commutes with the Hamiltonian. Hence, all eigenstates may be numbered by the value of their total

momentumK̂ . We denotei -th eigenstate with the total momentumK and withN atoms as:

j	 i
NK i = jN; K; i i ; (2.24)

In analogy with nuclear physics [135, 136] and following [119, 120] we call the lowest energy

states of a given total momentum of the system (i = 0 ), the yrast states.

Below, we present a short introduction to many-body ring systems put in a speci�c context of

this thesis.
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2.3.1 The Lieb-Liniger model

The famous Lieb-Liniger model [113, 114] describes particles moving on a circle of lengthL

and interacting with each other by delta potential. The Hamiltonian reads

Ĥ = �
~2

2m

NX

i =1

@2

@x2i
+ g

X

1� i<j � N

� (x i � x j ) (2.25)

and we consider here onlyg > 0 cases. The eigenstates of Eq.(2.25)can be found by the Bethe

Ansatz and by imposing PBC on the system as was done originally in [113]. Let f kg = k1; :::; kN

be an ordered set of N quasimomenta. Then, the Bethe Ansatz in our case can be written as

	 i
NK (~x) =

X

P

AP ei
P

j kPj x j (2.26)

where~x = ( x1; :::; xN ) denotes a position vector ofN particles. The summation in Eq.(2.26)

extends over all permutationsP of setf kg andAP are superposition coef�cients depending onP.

The quasimomentaki are real (forg > 0) and8i 6= j ki 6= kj . They fully determine the eigenvalues of

energyE = ~2

2m

NP

i =1
k2

i with a constraint imposed by the total momentumK = ~
NP

i =1
ki conservation.

With all that, one can derive a set of transcendental equations of the following form:

kj L = 2 �I j +
NX

n=1

� (kj � kn ) ; (2.27)

where� (x) = � 2 arctan
�

x
g

�
, andI j are integers (half-integers) if the number of particlesN

is odd (even) and8i 6= j I i 6= I j . Notice, that one set off I gi parametrizes exactly one eigenstate.

Hereafter, we always assume thatI 1 < I 2 < ::: < I N as well ask1 < k 2 < ::: < k N . As we see

Eq. (2.27)decomposes for an ideal gas situation with a well-known solution for a single-particle

momentum2 and phase shifts due to the scattering events introduced by interactions. The ground

state of the system is given by a set [111]:

f I GSg =
�

� N � 1
2

;
� N � 3

2
; :::;

N � 1
2

�
: (2.28)

In his seminal work [114], Lieb pointed out that all excitations of the system are combinations

of members of two families of elementary excitations. We call an excitation type-I if one takes the

highest (lowest) valueI N (I 1) and increase (decrease) it byp wherep stands for an integer. This

operation results in a new set
n

I I
j

o
determining a new set of quasi momenta

n
kI

j

o
. The system

acquires� p = kN + p � kN (� p = kN � p � k1) of momentum and� E = (� p)2 + 2�N
L j� pj of

energy. As an example we chooseI N andp = 1 , which gives:

�
I I

j

	
=

�
� N � 1

2
;
� N � 3

2
; :::;

N � 3
2

;
N � 1 + 2p

2

�
: (2.29)

In the limit Ng
L ! 0 such excitations are equivalent to Bogoliubov quasi-particles [114].

2Note, that for the ideal gas scenario the integersI j from a setf I g do not necessarily have to be distinct, as well as
real single-particle momenta.
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Figure 2.3: Schematic presentation of two branches of elementary excitations for the Lieb-Liniger
model forg ! 1 andN = 7 (top) and its energies as a function ofK for g ! 1 andN = 11. In
this �gure, the total momentum of the systemK is denoted byL , a set of integersf I j g by f l j g
with I N changed forlF . The momentum and energy units are2� ~

R and ~2

2mR 2 , whereR is the size
of the system. (Copyright (2011) by American Physical Society [120])

The second family of elementary excitations, called type-II excitations or hole excitations,

comes from changingI j (1 < j < N ) to I N +1 . As a result, the system gains� p = kN � kj if
N +1

2 < j < N (� p = k1 � kj if 1 < j < N +1
2 ) of momentum and� E = 2�N

L j� pj � (� p)2 of

energy. As an example we chooseI N � 1 (j = N � 1) resulting in:

�
I II

j

	
=

�
� N � 1

2
;
� N � 3

2
; :::;

N � 5
2

;
N � 1

2
N + 1

2

�
: (2.30)

In the limit Ng
L ! 0 they correspond to dark solitons from Gross-Pitaevskii equation, not only by

matching its dispersion relation [118], but also by matching its spatial properties [120, 124, 125].

We use Fig. 5 from [120] (see Fig. 2.3) to explain two types of elementary excitations

graphically and to show a typical spectrum of the �nite-size system. For smallK two elementary
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branches are close to each other. These part of the spectrum corresponds to the phonon quasiparticles.

We also notice, that wheneverK = p � N , whereK has an integer value (in2� ~
L units) andp

denoting an integer, the spectrum starts to resemble itself forK < N . For �nite systems on the

ring it suf�ces to consider the eigenstates only up toK=N = 1=2. This comes from the presence

of the so calledumklappprocess [114]. Any eigenstate with a total momentumK 0 = p � N + K

(wherep 2 Z; � N
2 � K � N

2 ) may be understood as the state with a total momentumK with a

shifted center-of-mass momentum. Note that such shifting does not change the internal structure of

the state.

2.3.2 Noninteracting gas of bosons

We investigate the system in the simplest case of the ideal gas,g = 0 . In this case, every Fock

state in the plane wave basis

f � j (x)g =
1

p
L

e
i 2�j

L x (2.31)

is already an eigenstate of the Hamiltonian(2.25). The energy of the Fock statejni = jn�1 :::nk :::n1 i

equals

E(n) =
2� 2~2

L 2

1X

k= �1

nk k2; (2.32)

In analogy with the previous subsection, we may distinguish two characteristic types of excita-

tions.The �rst ones are the elementary excitations obtained from the ground statejn0 = N i by

taking a single atom to momentumK , so the total momentum is carried by a single particle. The

spectrum is given by the parabolaE = 2� 2

L 2 K 2, which agrees with the Bogoliubov approximation

in a limiting case of vanishing interactions. This picture also corresponds with the Lieb-Liniger

type-I elementary excitations.

The another important branch consisting of the lowest energy states at a given momentum,

i.e. the yrast states, can be constructed as follows. One has to identify which set of integersnk

minimizes the kinetic energy(2.32), but under constrained total momentumK =
1P

k= �1
k nk . As a

result, the yrast state with momentumK is a state withK atoms occupying the plane wave with

momentumk = 1 , namely the orbital 1p
L

ei 2�x=L , and the rest of them remain in the state1p
L

corresponding tok = 0 :

jN; K; 0i := jn0 = N � K; n 1 = K i : (2.33)

The spectrum of the yrast states equalsE = 2� 2

L 2 K . The Eq.(2.33)tells us, that the yrast states are

ratherthe collectiveexcitations as obtained by exciting simultaneouslyK atoms.

These two branches, depicted in Fig. 2.4, are nothing else but the two branches of excitations

found by E. Lieb [114] but in the limit g ! 0, both named elementary excitations in the literature.

Apparently this nomenclature looses sense in the limitg ! 0, where the type II excitations are

collective.
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Figure 2.4: The two branches of excitations of the ideal gas: the upper branch (blue solid line), with
energy given byE = 2� 2

L 2 K 2 corresponds to the single-particle excitations. The lower branch (black

dashed line), with energy-momentum relationE = 2� 2

L 2 K comes from the yrast states. Momentum,
as de�ned in the text, is dimensionless.

2.4 Accessing spatial properties of a many-body system on a

ring

The main dif�culty in describing a many-body system pertains �nding its eigenstates. Including

interactions, this is a demanding task even for a model within classical physics, let alone a quantum

one with indistinguishable particles. Using the second quantization framework one can simplify a

problem distinctly. For a relatively small number of particles, an exact diagonalization technique

can be used to �nd numerically exact solutions if an analytical solution is not known. In this thesis,

when we discussN > 2 problems, we use the Lanczos algorithm [137] for exact diagonalization.

We construct Hamiltonian matrices in a plane wave basis introduced in a previous section by Eq.

(2.31). We adjust, to ensure convergence of our solutions, a cut-off for a speci�c problem described

in this thesis in a way presented in [138]. Finally, we obtain ani -th eigenstate of �xed total

momentumK and number of particlesN given by Eq.(2.24). Formally, its spatial representation

is denoted by

	 i
NK (~x) � h ~xj	 i

NK i ; (2.34)

where~x = ( x1; :::; xN ) is a position vector ofN particles. In general, such a many-body wave-

function consists ofN ! terms limiting possibilities of its spatial analysis.

2.4.1 Conditional single-body wave function

How to extract properties of a single-body wave-function from the many-body eigenstates

in the ring geometry? The naive approach would be to reduce the many-body density matrix by

tracing outN � 1 atoms. This approach would fail – all eigenstates would be projected to exactly
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the same single-body uniform density, as a result of the translational invariance. The Authors of

the paper [124] have shown another procedure, in the spirit of [139], which reveals the spatial

structures hidden in the eigenstates. One obtains a conditional single-body wave-function by means

of drawing remainingN � 1 particle-positions. The position of the �rst particle�x1 is drawn from

the uniform distribution,P(x1) = 1 =L. Then the position of the second one�x2 is drawn from the

conditional distribution, obtained by setting the �rst argument of the many-body wave-function

as the parameter with the value�x1 and tracing out the particlesx3; x4; : : : ; xN , i.e. from the

distributionP(x2) /
R

j (�x1; x2; : : : ; xN ) j2 dx3 dx4 : : : dxN . The procedure is repeated until

the conditional single-particle wave-function is reached:

 �x1 ; �x2 ; :::; �xN � 1
con (xN ) /  (�x1; �x2; : : : ; �xN � 1; xN ) (2.35)

Then, the probability distribution function of the last particle reads

P(xN ) / j  �x1 ; �x2 ; :::; �xN � 1
con (xN )j2 (2.36)

Note, that within the conditional wave function we have an access to high order correlation functions.

The only problem with this approach stems from the fact that calculating the marginal distributions

is an extremely demanding task even in the cases, where the analytical formulas for	 i
NK (~x) are

known [124].

2.4.2 Probing a multivariate probability distribution

In a measurement performed on the gas ofN atoms one obtains in fact an image of theN -th

order correlation function [140]. We reconstruct the experimental-like measurement by drawing

N positions from the probability densityj (x1; : : : ; xN )j2 of a given eigenstate as theN -body

distribution. Instead of the marginal distributions introduced in the previous subsection, we use the

Metropolis algorithm, based on the Markovian walk in the con�guration space [141], to perform

such drawings. In each 'measurement' we haveN points, as experimentalists have on CCD cameras.

We repeat this procedure many times, collecting con�gurationsf ~xgi =
�

~xi
1; :::; ~xi

N

	
from each

(i-th) shot. Due to the translational symmetry, the center of mass is a random variable with the

rotationally uniform distribution. To reveal any hidden correlations one has to appropriately align

the samples. We do it by rotating samples such that their centers of mass point in the same direction.

Because the problem has the topology of the ring, one can move to the 2-dimensional plane. Then,

the center of mass should be understood as a vector. We sketch it in Fig. 2.5. The center of mass

2D coordinates are given by:

X CM =
L

2�N

NX

j =1

cos
�

2�x j

L

�
;

YCM =
L

2�N

NX

j =1

sin
�

2�x j

L

� (2.37)

To �nd a 'ring' center of massxCM one should �nd the intersection of a circle depicted in Fig. 2.5

and a ray with a direction determined by the center of mass vector.
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Figure 2.5: Illustration of the de�nition of the center of mass (black thick arrow), being here a
vectorial sum of vectors (thin red arrows) pointing to the particles. The box with the periodic
boundary condition is here interpreted as a circle.

2.5 Mean-�eld and Bogoliubov approximations

Although in this thesis we focus on actual many-body physics, i.e. we try to �nd and analyze

eigenstates of a many-body system in a full manner, we sometimes compare our �ndings with

approximate theories of ultracold many-body systems. In the next subsections, we shortly introduce

the mean-�eld approach and the Bogoliubov approximation that is a �rst step beyond the mean-�eld.

2.5.1 Mean-�eld approximation

Usually, a single Fock with almost all bosons occupying a single-particle state is the ground

state of an ultracold bosonic system. The appearance of a product state allows applying a so-called

mean-�eld theory. Within it, the time-dependent Bose �eld operators ̂ (x ; t) can be written as:

 ̂ (x ; t) =
D

 ̂ (x ; t)
E

+ �̂ (x ; t) (2.38)

The mean value of the Bose �eld operator is just a classical �eld (x ; t) with a norm
R

dx j (x ; t)j2 =

N0 whereN0 is the number of atoms in a macroscopically occupied orbital. The term�̂ (x ; t)

describes �uctuations of the Bose �eld operator around its mean value. The �uctuations have both

quantum and thermal origin and they characterize all atoms outside the macroscopically occupied

single-particle state.
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In the limit of zero temperature and weak interactions, we may assume that the quantum

depletion of a ground state is negligible, namelyN0 ! N . Then, we can ommit the �uctations

term in Eq. (2.38). In this limit, also short-range interactions take their effective form with

USR(x ) ! Ups(x ).

The above assumptions make the energy, given by Eq.(2.2), a functional of� (x ; t) = j (x ; t)j2.

We want to �nd variationally (x ; t) minimizing its value, so that ful�lls �E [� ]
� � (x ;t ) = 0 . We

additionaly impose the normalization condition
R

dx j (x ; t)j2 = N . Finally, we obtain an

equation, called Gross-Pitaevski equation, for a single-particle orbital describing the whole system

by:

i~
@ GPE (x ; t)

@t
=

�
�

~2

2m
r 2 + U1(x ) +

Z
dx0Ue� (x � x0)

�
�  (x0; t)

�
�2

�
 GPE (x ; t) (2.39)

This equation was presented for the �rst time for contact interactions in the context of vortex

lines by E. P. Gross [43] and L. P. Pitaevskii [42] independently in 1961. Inclusion of the dipolar

interactions was done in 2000 by Góral et al. [19]. In Chapter 1, we discussed brie�y the most

important predictions made by Eq. (2.39) in the context of this thesis.

Imaginary Time Evolution We present a very helpful tool called Imaginary Time Evolution

(ITE) for �nding mainly ground states of Eq.(2.39). We always can decompose any eigenstate as a

sum of elements of a basis

 GPE (x ; t) =
X

k=1

e� iE k t=~ k (x ) (2.40)

whereEk denotes an eigenvalue of state k (x ) andEk > E k� 1. We introduce the imaginary time,

namely by replacingt ! � i� . With that, Eq. (2.40) becomes

 GPE (x ; � i� ) = e� E1 �= ~
X

k> 1

e� (Ek � E1 )�= ~ k (x ): (2.41)

We see that as� increases the ground state decays the slowest and remains signi�cant even for

larger times. Note, that one has to properly normalize the state after each step as the ground state

also vanishes (see [57] and references therein for more information).

In this thesis we use ITE in Chapter 6 to �nd bright solitons and droplet-like solutions. Both of

them are ground states. Note, that one can use ITE also to �nd an excited state of GPE to some

extension, but it needs slight modi�cations [57].

2.5.2 Number conserving Bogoliubov approximation

The well known Bogoliubov approximation stretches beyond the mean-�eld theory. It describes

energetically low excitations by the concept of quasiparticles. In this thesis, we mainly focus

on small systems where the usual Bogoliubov approximation with inde�nite particles' number

would be unjusti�ed. In Chapter 5 we will use a number conserving version of the Bogoliubov

approximation introduced and explained thoroughly in the work of Y. Castin and R. Dum [142]. As
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we use the plane waves we would like to write the Bogoliubov approximation in the particle basis.

For that, we deploy the following Ansatz [15] for the Bogoliubov vacuum (K = 0 ) in a system

with N atoms:

jN; 0i B /

 
�

ây
0

� 2
� 2

1X

k> 0

vk

uk
ây

k ây
� k

! N=2

jvaci ; (2.42)

wherejvaci is the particle vacuum and

uk ; vk =
� p

� k=Ek �
p

Ek=�k
�

=2 (2.43)

with Ek = k2=2 and the Bogoliubov spectrum is given by:

� k =

s
k2

2

�
k2

2
+ 2

N
L

Ve� (k)
�

; (2.44)

whereVe� (k) is a Fourier transform of the effective potentialUe� (x). A single Bogoliubov

excitation with a total momentumK is expressed by:

jN; K i B /
�

uK â0ây
K + vK ây

0â� K

�
jN; 0i B (2.45)
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Chapter 3

Two dipolar atoms in a harmonic

trap

We observe a remarkable progress in experiments with ultra cold quantum gases with only a

few atoms in a trap. These experiments are performed with cold atoms distributed between the

wells of an optical lattice. Many of them are prepared in the Mott insulator phase [143–145] where

a well de�ned, small number of atoms is con�ned in each well. Another set of a few atoms in

a trap experiments is offered by the setting available in Heidelberg and Innsbruck labs [32, 146]

where in the case of the latter highly magnetic erbium atoms are used. Detailed properties of such

systems crucially depend on the properties of atom-atom interaction. This interaction is best tested

if exactly two atoms are present. Early analytic predictions for contact interacting atoms [129] were

positively veri�ed in precise spectroscopic experiments [147].

The dipolar interaction couples spin degree of freedom with the orbital angular momentum.

This leads to the well known Einstein - de Haas effect [40]. To observe this effect with chromium

atoms, where dipole - dipole interaction is just a perturbation, properly resonant magnetic �eld

strength must be used [148]. Of course, direct coupling to the orbital angular momentum is possible

for suf�ciently strong dipole-dipole interactions. For the large systems, it was predicted using a

conventional mean �eld approach [149]. A simple case of two aligned dipoles was also considered

in this context [150].

It is the purpose of this chapter to present exact analysis of the role of dipole-dipole interactions

for two atoms trapped in a harmonic potential without any external magnetic �eld. The simplicity

of the harmonic potential allows separating the center of mass degree of freedom. What is more,

utilizing this symmetry we may construct the energy eigenstates using the angular momentum

algebra. What remains is the set of coupled radial Schrödinger equations linking components of the

wave function corresponding to orbital angular momenta differing by two units. Finally, we present

our results observing the Einstein-de Haas effect [40] analog.
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3.1 Center of mass and relative motion coordinates

Let us consider two identical atoms (fermions or bosons) of massm moving in an anisotropic

harmonic trap with an angular frequency! = ( ! x ; ! y ; ! z). The atoms mutually interacts by a

translationally invariant potentialU(r 1 � r 2), wherer 1 = ( x1; y1; z1) andr 2 = ( x2; y2; z2) are the

position vectors of the two atoms. The Hamiltonian of such a system can be written in a compact

form as:

H = �
~2

2m
r 2

1 �
~2

2m
r 2

2 +
1
2

m! 2 �
�
r 2

1 + r 2
2

�
+ U(r 1 � r 2); (3.1)

where! 2 =
�
! 2

x ; ! 2
y ; ! 2

z

�
andr 2

i =
�
x2

i ; y2
i ; z2

i

�
. Note that both the kinetic energy and the external

potential energy have the quadratic form. Therefore, above Hamiltonian can be separated into a

center-of-mass part and a relative motion part,H = HCM + H rel with:

HCM = �
~2

2m
r 2

R +
1
2

m! 2 � R 2

H rel = �
~2

2m
r 2

r +
1
2

m! 2 � r 2 + U(
p

2r );
(3.2)

which can be diagonalized separately. HereR = 1p
2

(r 1 + r 2) is the center of mass coordinate

andr = 1p
2

(r 1 � r 2) stands for the relative motion coordinate. We introduce somewhat unusual

factor of
p

2 for the symmetry. The eigenstates and corresponding eigenvalues ofHCM are the well

known quantum harmonic oscillator solutions. The only possible new phenomena may be found in

the relative motion part of Hamiltonian, which is a subject of our studies in next sections.

3.2 Isotropic trap without an external magnetic potential

In this section we turn our attention to two identical dipolar atoms (composite bosons or

fermions) of a spin (a total angular momentum of an atom)f 1 = f 2. We constrain our considerations

to the case of an isotropic harmonic trap with! = ( !; !; ! ). In a following subsections we use

harmonic-oscillator units, in which~! is a unit of energy and the characteristic size of the ground

state of the trap
q

~
m! is a length unit.

3.2.1 Model

An interaction potentialU(r ) is a sum of a short rangeUsr(r ) and a long range magnetic dipole

- dipole interactionUdd(r ) potentials,U = USR + Udd . The magnetic dipole - dipole interaction

potentialUdd(r ) can be expressed in the following form:

Udd(r ) =
� 0(� B gj )2

4� jr j3
[F1 � F2 � 3 (F1 � n) (F2 � n)] (3.3)

wheren = r 1 � r 2
jr 1 � r 2 j , � 0 stands for the vacuum magnetic permeability,� B indicates the Bohr

magneton,gj is the Landé g - factor andF is the total angular momentum of an atom (spin vector).

Thus for the atomic spin quantum numberf half integer we have fermions and forf integer we

have bosons.
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We modelUSR(r ) as a spherically symmetric barrier written as [151]:

USR(r ) =

(
0 for r > b = 100 a0

1 for r � b = 100 a0;
(3.4)

wherer = jr j anda0 is the Bohr radius. The scattering lengtha for a scattering process of a single

particle on an in�nite spherically symmetric potential barrier is equal to the radius of the barrier

i.e. b = a. Later in this work, a value ofb is determined by the numerical calculations for the

dysprosium atoms [152]. For differentUSR models see i.e. [129, 150, 151, 153–155]).

After introducing our model forU(r ) the relatvie motion part of HamiltonianHRel takes the

�nal form as:

H rel = �
1
2

r 2
r +

1
2

r 2 + USR(
p

2r ) +
gdd

r 3 [F1 � F2 � 3 (F1 � n) (F2 � n)] (3.5)

The strength of the dipole - dipole interaction is characterized by thegdd = � 0 (� B gj )2

8
p

2�
. Note that

q
~5

m3 ! is a unit ofgdd .

3.2.2 Solution

In order to investigate the relative motion of the two atoms we observe that the total angular

momentum is conserved:

[F + L ; H rel ] � [J; H rel ] = 0 (3.6)

whereJ stands for the total angular momentum of the relative motion which is a sum of the total

spin operatorF = F1 + F2 and the orbital momentum operator of the relative motion of the atoms

L . The spherical symmetry of the system means that it is convenient to solve the relative motion

problem in a total angular momentum basis. An Eigenfunction of the system in this basis reads:

	 jm j
n (r ) =

X

l;f

ajm j lf
n  jm j lf

n (r ) =
X

l;f

ajm j lf
n � jlf

n (r ) jjm j lf i

=
X

l;f

ajm j lf
n � jlf

n (r )
X

m l ;m f
m l + m f = m j

C jm j
lm l fm f

jlfm l mf i
(3.7)

Herej denotes the total angular momentum quantum number andmj the magnetic total angular

momentum number,l andml stand for the orbital momentum and the magnetic orbital momentum

quantum numbers respectively. The total spin and its projection values are indicated byf andmf

andC jm j
lm l fm f

denotes Clebsch - Gordan coef�cients [156]. For a givenj andmj the consecutive

Eigenfunctions are enumerated by then = 0 ; 1; ::: number andajm j lf
n indicate constant coef�cients.

The choice of our basis allows us to reduce a complicated three dimensional problem to the set

of the radial Shrödinger equations for� jlf
n with givenj , l , f . Any coupling between the equations

may only come - in the case of spherically symmetric trap - from the dipolar part of the relative

motion Hamiltonian. We are now interested in the result of acting with theUdd operator on a single
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state jm j lf
n (r ). In order to calculate this it is convenient to rewrite the dipole - dipole interaction

potential in terms of the ladder operators:

Udd =
gdd

r 3

�
1
2

(F1+ F2� + F1� F2+ ) + F1zF2z � 3 (F1+ n� + F1� n+ + F1znz)

� (F2+ n� + F2� n+ + F2znz)]
(3.8)

with:

n+ =
x + iy

2r
= �

r
2�
3

Y 1
1 (�; ' )

n� =
x � iy

2r
=

r
2�
3

Y � 1
1 (�; ' )

nz =
z
r

=

r
4�
3

Y 0
1 (�; ' )

F+ = Fx + iF y

F� = Fx � iF y

(3.9)

HereY m l
l (�; ' ) denotes a standard spherical harmonic in the spherical coordinates. Using

(3.8), (3.9), spin operators properties and the well - known formula for the product of two spherical

harmonics (see for instance [157]) it can be shown that:

Udd  jm j lf
n (r ) =

gdd

r 3

X

l0;f 0

� ll 0f f 0 jm j l0f 0

n (r ) (3.10)

with the following selection rules:

l0 = l + � l � l = 0 ; � 2

f 0 = f + � f � f = 0 ; � 2
(3.11)

The above result might be understood by the fact that the dipole - dipole interaction operator is

symmetric with respect to the exchange of the two particles. Thus it does not change a symmetry

of the given jm j lf
n (r ). A value of the scalar coef�cient� ll 0ss0 is expressed by a product of Clebsh

- Gordon coef�cients determined by the standard angular momentum algebra.

Knowing (3.10) we are able to �nd the radial Schrödinger equation for the� jlf
n (r ) � r� jlf

n (r )

by the straightforward calculation:

�
1
2

d2

dr2 � jlf
n (r ) +

1
2

r 2� jlf
n (r ) +

l(l + 1)
2r 2 � jlf

n (r ) +
gdd

r 3

X

l0;f 0

� ll 0f f 0� jl 0f 0

n (r ) = E j
n � jlf

n (r )

(3.12)

whereE j
n is an eigenvalue. The short range potentialUSR(r ) used in this chapter is incorporated in

the boundary conditions, namely by� jlf
n (r ) = 0 for r � b.

As can be seen in (3.12) in order to �nd a� jlf
n (r ) one has to solve a system of the radial

Schrödinger equations for a �xed total angular momentum numberj . Note that the number of

equations in the system is determined by the maximum value of the total spin:f max = f 1 + f 2.

30



3.2.3 Main results

Solving the system of the radial Schrödinger equations introduced in the previous subsection

completes the full characteristic of an eigenstate	 jm j
n (r ) with anyj , mj andn. In particular, we

are interested in the case with the total angular momentumj = 0 , because it turns out that the

ground state of the system isj = 0 state for allf 1 = f 2 > 1
2 .

From the angular momentum algebra we also deduced that for an eigenstate withj = 0 the

total spin number is equal to the orbital quantum number i.e.l = f . Thus for such states the

corresponding coef�cient matrix� ll 0f f 0 reduces to the� ll 0 matrix. We calculate them for the

various atomic spin values i.e.f 1 = f 2 = 1
2 ; 1; 3

2 and 21
2 . Our results can be found in the Appendix

3.A.

Knowledge of the� ll 0f f 0 coef�cients allows us to solve numerically the system of the radial

Schrödinger equations of the form presented in (3.12). We use the multi-parameter shooting method.

We set theb = 0 :04 in the harmonic oscillator units. For the dysprosium-like atoms it corresponds

to the trap frequency! � 2� 3:2 kHz and consequently togdd = 0 :0006in the harmonic oscillator

units. Our system admits two control parameters that may be changed by experimenters. Note that

thegdd in the harmonic oscillator units depends on the trap frequency as
p

! , so it is tunable. One

may also change the scattering lengthas by the optical Feshbach resonances [158–161], so that the

bvalue in the harmonic oscillator units may be kept constant while one changes the trap frequency.

In Fig. 3.1 we present the eigenvaluesE 0
n with n = 0 ; 1; 2 as a function ofgdd for atoms with

different spins. For atoms with the spinf 1 = f 2 = 1 ; 3
2 and 21

2 we consider only solutions for the

even orbital angular momentum quantum numberl . In the case of oddl results are qualitatively the

same1.

For spin1
2 atoms the energy values rise very slowly asgdd rises. The radial part of 0011

n (r )

is simply the� 011
n (r ), so the expected value of the orbital angular momentum operator



L 2

�
is

constant and equal


L 2

�
= 2 for all n. In fact, we checked that for12 atoms the ground state of the

relative motion is the lowest state forj = 1 . To understand this a bit surprising �nding, we refer

to the results from the Appendix 3.A. In this case, the crucial thing is that for spin1
2 particles the

coef�cient matrices are of dimension one. It means, that there is no coupling between differentl

states and the sum in Eq. (3.12) reduces to a single term. Then, it can be shown, that forj = 0 only

the triplet state has the non-zero positive coef�cient indicating the repulsive character of the dipolar

interactions. On the other hand, the only non-zero valued coef�cient forj = 1 state is negative and

dipole - dipole interaction is attractive.

For the higher spin values we observe more complex behaviour. First of all, the energy values

for n = 0 ; 1 and2 are highly dependent on the value ofgdd . For low values ofgdd eigenvalues

vary slightly, then for higher values they decrease rapidly. We observe also the presence of anti -

crossings between consecutive linesE 0
n (gdd) accompanied by changes of the



L 2

�
. This is due to

changes in the structure of the radial part of eigenstates. From the (3.12) we notice that the radial

part of an eigenstate is a linear combination of the� 0ll
n (r ) where in this casel 2 f 0; 2; ::; 2 � f 1g.

1 Note that one has to assure a proper bosonic (fermionic) symmetry of the total wave function, which is a product
of the center of mass wave function and the relative motion wave function. For instance, an evenl relative motion state
has to be combined only with the center of mass state with the even (odd) parity for bosons (fermions).
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As thegdd rises the weight of each� 0ll
n (r ) function varies i.e. values ofa00ll

n coef�cient varies. For

instance, we see that for lowgdd the ground state consists of almost only the s - state (� 000
0 (r )),

whereas as we increase the trap frequency, contributions of the functions with higherl grow. The

ground state starts to ”rotate”. This feature resembles the Einstein - de Haas effect [40], although it

is caused only by the internal spin - spin interactions between two atoms without any in�uence of

external �elds.

Moreover, as values ofa00ll
n for l > 0 grow anda0000

n decreases also mutual orientation

between the atoms starts to favour attractive regions of the DDI over repulsive regions. For the spin

f 1 = f 2 = 1
2 atoms, such a behaviour is impossible as all three angular parts of the eigenstates

are multiplied by the samea0000
n � 000

n (r ) expression which is almost being unchanged asgdd rises.

This fact explains qualitative difference between the dependence of the eigenvalues ongdd for spin
1
2 and higher spin values.

To understand deeper the underlying spatial mechanism, which is responsible for a steep

decrease of energy for higher spins we use an example of thef 1 = f 2 = 1 case, which is the

simplest one where the effect occurs. As forj = 0 the total spinf cannot be higher than2, the only

possible values of orbital angular momentum are0 and2. Let us consider a situation, whenmf = 0

(thus alsoml =0), what means that spins are antiparallel. One can notice that for state with well

de�ned orbital angular momentuml = 2 , the value of average energy of dipole-dipole interaction

is positive and forl = 0 it is equal to zero (because of the shape of spherical harmonics). Attractive

interaction can dominate only when the system is in appropriate superposition of states withl = 0

andl = 2 (see Fig. 3.2). This statement appears to be true in general - forj = 0 the value of energy

of states with the well de�ned orbital angular momentuml is always positive (or equal to zero for

l = 0 ). This is the reason, why decrease of the energy does not appear forf 1 = f 2 = 1
2 - as the

maximum spin isf = 1 , for given parity of spin function there is only one possible orbital angular

momentum.

Fig. 3.1 also illustrates that the bigger atomic spin is, the lower trap frequency is needed to

observe above effects. In addition, the effect of changes in the expected value of orbital angular

momentum is stronger for larger atomic spin values. It seems that at least it is possible to check our

model experimentally using the system of the dysprosium atoms with the21
2 spin.

The nature of anti - crossings in Fig. 3.1 can be explained by Landau - Zener theory [162, 163]

as depicted in Fig. 3.3. As an example we used3
2 spin atoms. A composition of the eigenstate

corresponding to the eigenvalueEn (gdd) is not conserved along given energy line, but it propagates

along straight lines upward or downward. This type of effect was already observed by Kanjilal et

al., although for a simpler system consisting of two aligned dipoles [150].

3.2.4 Results for different barrier width and one control parameter

In the previous subsection we manipulated the trap frequency! and the scattering lengtha

to tunegdd and keepb value constant at the same time. Here, we discuss how the results for

eigenvalues depend on the hardcore potential widthb. As an example we use spin32 atoms. For

different values of the atoms spin we obtain similar behaviour. In Fig. 3.4 we plot eigenvalues of
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Figure 3.1: EnergyE 0
n vs gdd and expected value of orbital angular momentum operator



L 2

�

for then = 0 ; 1; 2 and atoms of spinf 1 = f 2 = 1
2 ; 1; 3

2 ; 21
2 . The black solid line represents

the ground state, the red dashed dotted line and blue dashed line indicate �rst and second excited
states respectively. The insets magnify the anti - crossing area. Note different horizontal scale for
f 1 = f 2 = 21

2 .
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Figure 3.2: Shape of the angular parts of the wave functions formf = 0 andml = 0 . The blue
region indicates the negative value ofY 0

2 . As spins are antiparallel, for the states with the well
de�ned orbital angular momentum repulsion dominates. To reveal the attractive interaction, a
superposition of the states is needed.

the lowest three states as a function ofgdd for three differentbvalues. The results are qualitatively

the same. We notice that the lowerb is, the faster anti-crossings occur in the energy levels. This can

be explained be the fact that asbvalue rises the contact interactions are getting stronger. This means

that alsogdd has to be bigger in order to observe effects caused by the dipole-dipole interactions.

The analogue of the Einstein - de Haas effect also occurs ifb is not kept constant asgdd rises

i.e. trap frequency rises. In Fig. 3.5 we plot eigenvalues andhL 2i of the lowest tree states as a

function of
p

! . We observe anti-crossings of the energy levels and corresponding changes inhL 2i

which are very similar to those obtained in the main text. Nevertheless, it should be pointed out

that in this case the effect is rather tenuous and thus harder to observe than in the case with constant

b. Consequently, to make the effect more visible, the plot is generated forgdd value much higher

thangdd of typical atoms of32 spin.

3.2.5 Conclusions

Motivated by experiments under development [26, 32, 96, 164] we based our calculations on

dysprosium parameters. Our model of the dipole - dipole interactions between two atoms reveals a

non-trivial dependence of two atoms in a harmonic trap system on the trap frequency. We showed

that increasing! the system undergoes an analog of Einstein - de Hass effect. Such a behaviour is

a result of spin - spin interaction and its coupling to the orbital angular momentum. We show a

possibility of adiabatically pumping our system from the s-wave to the d-wave relative motion. The

effective spin-orbit coupling occurs at the Landau - Zener anti-crossings of the energy levels. Our

results may be checked experimentally for the dysprosium atoms. Of course, proposed model is

oversimpli�ed in this case as dysprosium atoms are not exactly spherically symmetric [152].
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