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Summary

The thesis describes the influence of dipolar interactions on the properties of many-body systems
from a theoretical point of view. Its main goal is to analyze the consequences of the interplay
between the local and non-local parts of interactions between atoms. The thesis puts special
attention on stronger interactions beyond the applicability of the usual mean-field approaches. The
presented study focuses mainly on one-dimensional models.

In Chapter 1, we briefly review the history of studies on ultracold gases with emphasis on
dipolar atoms examples. We embed the subjects of the thesis in the context of ongoing research in
the field.

Chapter 2 introduces the theoretical framework needed in the later parts of the thesis. That
includes discussion of some general properties of the many-body systems and two-body interactions
in the ultracold limit. It recalls the well-know mean-field description of ultracold gases.

Chapter 3 presents properties of two dipolar atoms moving in a harmonic trap without an
external magnetic potential. It is possible to adiabatically pump the system from the s-wave to the
d-wave relative motion.

Chapter 4 compares the mean-field dark solitons and the lowest energy states for fixed total
momentum of the corresponding many-body system of weakly interacting bosons. The bosonic
symmetrization is responsible for emergence of solitonic features even in the limit of vanishing
interactions.

Chapter 5 studies bosons interacting via attractive short-range and repulsive dipolar forces. It
shows that the lowest excitations of the system may be smoothly transformed from the typical states
of collective character to the celebrated roton state by simultaneous tuning short-range interactions
and adjusting a trap geometry.

Chapter 6 describes a transition between droplet-like and bright soliton-like states at the border
of net attractive and repulsive interactions for a small number of atoms and strong interactions.
Based on that, it introduces a new version of the Gross-Pitaevski equation.

Chapter 7 presents a microscopic model of two-body wave function diagnosis based on atom-
light interactions. In particular, it discusses the influence of pulse properties on the absorption of
photons by two identical atoms moving in a trap.

The last Chapter 8 summarizes the thesis and outlines some possibilities of extending the
presented results.
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Chapter 1

Introduction

The very rst encounter with quantum physics blurs the classical concept of an atom almost
literally. A billiard ball picture gives way to a nonintuitive wave-particle duality description. The
second strike to an enthusiast of the quantum theory comes from the fact that within it all particles
are indistinguishable. This gives rise to quantum particle statistics predicting bosons (integer spin
particles) and fermions (half-integer spin particlés).

As in the classical world, but with new dif culties mentioned above, quantum physics branches
into two main categories of phenomena: the one-body problem and the many-body problem. Indeed,
all two-body models reduce to the former by the center of mass separation. Moreover, in some
cases, the picture of a single atom immersed in the eld produced by the rest of the particles well
represents the most important properties of a system with a large number of particles. We call such
a regime the mean- eld regime. Usually, the three-body problem is already intractable analytically,
not to mention the system with dozens of atoms.

The efforts in this thesis swirl around the many-body problems in the context of ultracold
dipolar atoms. Owing to the recent experimental advances, it is now possible to probe these
complex systems. Still, there is a lot to do from both theoretical and experimental perspectives.

1.1 Ultracold gases and Bose-Einstein condensate

Owing to wave-particle duality every particle with a momentkiis associated with a matter
wave characterized by its wavelength dubbed de Broglie wavelengtk E For any massive
body (with massn) in an ensemble with equilibrium temperatdreit reads

S

2 =2
mkgT

dB = (1.1)

The number of atoms occupying the volume elemept, known as the phase space density, is
v=n gB with n denoting the number density. It is small for gas in the room temperature, but as
we see from Eq(1.1), decreasing temperature makes the phase space density growing. At some
point,v 1, the spatial extent of the wavepacket becomes of the same order of magnitude as the

INote, that in two dimensions also anyonic statistics may appear.



average distance between atoms. Accordingly, the system stands in the gate of the realm of the
degenerated quantum gas, where the quantum statistics starts to play a crucial role. We are going to
focus on Bose gases leaving the introduction to the degenerate Fermi gases to extensive reviews,
see for instance [1] and references therein.

(Probably) every physicist knows (or should know) about the historical origins of the Bose-
Einstein statistics]]. In the letter to Albert Einstein in 1924, Satyendra Nath Bose derived Planck’s
empirical formula for black-body radiation evoking to the concept of indistinguishable phdtons.
With Einstein's blessing and translation to German, the paper was published and then followed by
its generalization for massive particles in the ideal gas done by Einstein. In Einstein's second paper
on the subjectd], he envisaged that when the phase space density exceeds a critical value, for the
ideal gas/;y 2:612 almost all bosons would occupy the lowest single-particle state. Therefore,

a many-body system would behave, no matter how big it would be, like a single particle. The
same way as for the laser, the purely quantum effect leads to macroscopic coherence. Note, that
Bose-Einstein condensation is a peculiarity of the quantum statistics only.

At rst, considered as a minor theoretical curiosity at times of early quantum mechanics
development, BEC was brought back into the scienti ¢ discussion by London and Tisza in the
context of super uidity B, 7]. Over the years, BEC phenomenon was also studied in a diversity
of topics in condensed matter, subatomic physics, and astrophysics, including superconductivity
or neutron starsg]. A lack of BEC experimental realization became an obstacle in further
investigations.

One can reach the critical phase space density of gas only in the limit of extremely low (high)
temperatures and real-space densities. Densities of the neutron stars are impossible to access in
terrestrial laboratories. On the other hand, we expect a solid state rather than a gas in the ultracold
limit even for a weakly interacting one as the ideal gas does not exist in natBrebability of
three-body recombination process, responsible for solidi cation, scale®, aghereas two-body
scattering yielding thermalization occurs with a rate proportionaftoA gaseous probe has to
be ve orders of amplitude more dilute than the air to overcome recombination. In that case, one
needs to cool the probe undkr K to achieve the critical phase space density of BEC and to devise
smartly a container of gas, because containers made of material could disrupt cooling. These tight
requirements resulted in enormous advances in the eld of cooling and trapping &ebik [

Finally, the rst BEC was observed in 1995 opening a new era in ultracold phykx:48]. Then,
observation of Feshbach resonance$ find mastery in using them enhanced a number of new
experiments with BEC greatly. We refer the reader to excellent and comprehensive reviews devoted
to the development of the eld, for exampld4-17], to name only few. Nowadays, the ultracold

gases serve as a versatile test-bed for different theories in many other elds of physics like condense
matter and also as an upgrade of technologies based on quantum mechanics like quantum metrology,
guantum computers or atomic clocks [18].

2The concept of the indistinguishable particles was considered for the rst time by W adys aw NatarZof in [
1911. However, these works did not formulate the statistic itself and did not go down in a broad scienti ¢ discourse.
3Even if the ideal gas had existed in reality, it would have not thermalized. To cool down a system, one needs
interactions.



Although Goral et al. in19] provided with the rst theoretical description of condensate
with long-range dipolar interactions in 2000, the early BEC experiments were conducted with
elements that effectively interact only short-range and dipolar forces were nedfigitiith a
pioneering condensation 8fCr [23, 24] followed by '%4Dy [25], and 162Dy and 1¢°Dy [26]
and1®8Er [27] much of the physics was enhanced as these elements posses signi cant permanent
magnetic moments (6-10z) while for instancé’Rbonly 1 g. A comprehensive review on the
rst experiments with dipolar BEC, including observation of the rst quantum ferro 28] is
written by Lahaye et al.Z9]. A lot of work with dipolar atoms was also done in the context of
optical lattices simulating different models from condensed matter, for instan88-82 and
references therein. Precise control over the strength of short-range interactions allows studying
thoroughly the interplay between them and long-range dipolar interactions. In a recent series
of groundbreaking papers, self-bound dipolar dropld8; 34], as well as roton excitatior8p]
followed by the detection of dipolar supersolid were repor&@&-38]. Dipolar systems have still
many to reveal. We need ongoing theoretical effort to properly describe those systems because they
pose a lot of dif culties as dipole-dipole interactions are anisotropic and long-range. Now, we will
describe them brie y following the review paper by Lahaye et al. [29].

1.2 Dipolar interactions

The general form of dipole-dipole interaction (DDI) in the absence of an external magnetic
eld reads:

Ugg(F) = %(el e)r? ?éel r)(ez 1),

wheree; denotes the orientation of dipoleandr is a vector joining two dipoles with = jrj.

The strength of dipole interactioiy depends on whether dipoles are magnetic or electric. For
magnetic atom€yq = o 2With g being the vacuum permeability ands a magnetic dipole
moment (seed9 for values for different elements) depending on the total spin of an atom (see
Chapter 3.2). For electric dipol€%y = D—Oz with D being electric dipole moment ang is the
vacuum permittivity?

(1.2)

In most experiments with ultracold physics, a strong external magnetic eld is applied to the
probe in order to trap particles. Atoms are polarized end e, accordingly. In that scenario, the

DDI can be written as
Cqa 1 3cog

Udga(r) = Tr731 (1.3)
where is the angle between the direction of polarization and the relative position of the particles. In
Fig. 1.1 a) and b) from49] we see a schematic view of dipolar interactions showing its anisotropic
nature. Mathematically DDI are long-range in 3D and non-local in lower dimensions (for detailed
discussion see [39]).

“However, the dipolar interactions, even comparably small, turned to be crucial in understanding the physics of the
8Rb F = 1 spinor BEC [20-22].

®In this Thesis, we focus solely on magnetic atoms. 26ktp learn more about polar molecules, Rydberg atoms
etc.



In a constrained geometries polarized dipoles may be ordered in any con guration between two
limiting con gurations: repulsive side-by-side con guration with= - and attractive head-to-tail
con guration with = 0 (see Fig. 1.1 ¢) and d) respectively). We remind, that for 54 the
DDI vanish.

We will see in Chapter 3, that the DDI couple internal (spin) and external (orbital) degrees of
freedom. A celebrated example of this is the Einstein-de Haas effect. In the original version of the
experiment 40], the authors observed how a ferromagnetic cylinder suspended on a thin string
rotated around its own axis after the applied magnetic eld had changed. The system reacted to the
eld change by changing the orientation of the magnetic moments in the atoms (the projection of
the spin component changed). The rotation of the system is a simple result of the total momentum
conservation. In Chapter 3 we will return to this phenomenon in the context of ultracold gases.

Figure 1.1: Dipole-dipole interactions. a) Non-polarized case. b) Polarized case. c) Repulsive
side-to-side con guration. d) Attractive head-to-tail con guration. All rights reserved [29]

1.3 Ultracold gas in lower dimensions

As we pointed out earlier dipolar BECs introduced a new twist to the eld of ultracold gases. A
plethora of experiments and theoretical results in three dimensions both for dipolar and alkali gases
do not drain all possibilities. Now, we restrict the dynamics of an ultracold gas to one diménsion.
In experiments, one can tightly con ne the gas in chosen directions (see also Chapter 2.2.2). In the
next section, we will discuss three physical phenomena, which are particularly important in the
context of this Thesis.

®In one dimension there is no actual BEC according to the modern de nition of the BEC state for interacting
gases given by Penrose and Onsager in 1956 [41]. However in general, in the limit of ultra-low temperatures and weak
interactions, the one-dimensional many-body system ful lls criteria for the mean- eld description with the GPE.



The most common way to describe a BEC in the vicinity of zero-temperature is by the integro-
differential Gross-Pitaevskii equation (GPE) [42, 43]

Z
2
iI~@ cpe(Xit) = 2?*‘ N dx%Ue (x x9) ere(x®Dj® cpe(x;t); (1.4)

whereUe is an effective potential in the ultracold regime with both local and non-local interactions
described in Chapter 2.2. In the context of atoms it is the so called mean- eld (MF) description
of the weakly interacting bosong4]. We will brie y derive this equation in Chapter 2.5.1. The
mean- eld description of an ultracold system in one dimension provides with an inexhaustible
wealth of theoretical outcomes and experimental hints about the properties of ultracold gases. It
would be almost impossible to list them all in the nite framework of this thesis. However, we
compactly introduce and discuss topics that will arise in the later Chapters.

Soliton It is hard to list all important features, discoveries and applications associated with
solitons. These mathematical objects, certain types of solutions of nonlinear integrable differential
equations, were found in many areas of Science, ranging from physics to biology and medicine.
There is a number of known equations supporting the solitonic solutions. In physics, very important

Figure 1.2: Sketch of density (left) and phase (right) of dark solitons in a box with periodic boundary
conditions. The solid red lines correspond to the extreme situation of a black soliton - its density
vanishes at the center, whereas the phase hgamap. The blue dashed lines correspond to an
example of a gray soliton with the minimal densit6. Position is in the box units (see Chapter

4).

examples are the Korteweg-de Vries equatidi,[Sine-Gordon equatiorp, 47] and the GPE.
Here, we focus on the contact interacting gas whéyrgx) (x) wih the corresponding GPE:

2

i~@ cpE = +gNj eprej’  GpE (1.5)

2m

whereg is the coupling strength (see Chapter 2.2.1). This equation has also proved to be useful to
describe the electric eld of light in the non-linear media [48].

The solitonic solutions of Eq(1.5) were derived already in the 70s by A. Shabat and V.
Zakharov A9, 50]. We recall the main nding for the positive coupling strength> 0. In this
case the spatial density in the soliton has a single characteristic notch. Within the area of the notch
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the phase of gpg is quickly changing. In the extreme situation, the density in the middle of the
soliton is zero and the phase has pmp. The width of the soliton is given by the healing length
=1 P gn. The properties of dark solitons are illustrated in Fig. 1.2. Shortly after cooling atoms

down to the Bose-Einstein condensate regime, also the solitons have been gebér&i@d In the
present days solitons are routinely produced with the phase imprinting method in many laboratories
around the world. In this Thesis, we will discuss the Lieb-Liniger model underlying the dark
solitons in a BEC phenomenon in Chapters 2.3.1 and 4.

Recent ndings of groups from Poland and Great Brit&A{56] shows that some solutions of
the GPE with dipolar interactions also displays features of dark solitons. However, the GPE in this
scenario is not integrable, which affects vastly the dynamics and properties of the system.

In the attractive case witt) < 0 a solution to Eq. 1.5 takes a form of bright solitons. They have
a sech-shaped pro le and they are more common in nature than dark solitons. As in the dark soliton
case, there exists a dipolar analog of the usual bright soliton with many similar properties. We refer
the reader to [57] for a very comprehensive introduction to solitons in ultracold gases.

Rotons In the contact interacting ultracold gas low-lying excitations described by the Bogoliubov
approximation feature phonons and free-particle only. A bit different situation takes place with a
dipolar gas where the roton minimum may appear. Before we refer to the rotons in an ultracold gas,
we present a brief history of this excitation in the context of experiments with ultracold Helium.

In the 30s of the last century, Allen and MisenB8][and Kapitza $9] discovered unusual
properties of the Helium-II followed by rst theoretical attempts in explaining thén¥]. The
gualitative theory of super uidity is due to Landa6(-62]. He deduced from the measurement of
the speci ¢ heat§3] and the second sound velocity4] that the excitations in the Helium-1l must
have a peculiar spectrur] with the local minimum dubbed "roton”. Later Feynman alo@§ [
and with Cohen§6] formulated the very rst, yet semiquantitative microscopic model explaining
the origin of this local minimum. Finally, in Helium the roton was observed experimen@iy [
but rather unsatisfactory agreement between theory and measurement suggested that the exact
nature of the rotonic excitation was still missing. It was nally understood many years later by
means of subtle ansatzes for the roton's wave funct@ng9]. The existence and properties of
the roton were also discussed in depth in studies of excitations of thin liquid-helium 15 §).

It should be emphasized that liquid Helium-Il is a strongly correlated (with a small condensate
fraction) system, where roton's characteristic momentum scales as the interatomic distance. There
are still active studies of the roton state in this regime [73].

At the beginning of XXI century the roton-maxon spectrum was predicted in completely
different physical system — trapped dipolar gas of polarized ultracold atoms. The nature of the roton
in ultracold gases is very different than the one in Helium (§dgfpr detailed discussion). Here
it is induced by the interplay between the long-range forces and a steep external potential in the
polarization direction 75, 76]. Without an external potential the system is unstable, as the dipoles
would rst tend to the head to tail con guration and then they will just fall on each other due to
the attractive part of the dipolar interaction. The system may be stabilized by the steep external
potential, which blocks the motion in the direction of the dipoles' polarization. Roton emerges



Figure 1.3: Sketch of a typical dispersion relation with a roton minimum in a trapped ultracold
dipolar gas. The position and depth of the minimum can be tuned in the experirBgniSriergy
and momentum in the box units introduced in Chapter 5.

for parameters close to collapse, for which dipoles are close to overcome the trapping forces. In
this situation atoms cluster into 'clumps’, regularly separated by a period corresponding to inverse
of the roton momentun[7]. This happens for relatively weak interactions, for which the system

is in the Bose-Einstein condensate state. Therefore, one can use the mean eld or Bogoliubov
description and nd the roton state as a Bogoliubov quasi partit®ed4]. The dispersion curve

of such systems is related to a speci ¢ k-dependence of an effective interaction potential rather
than to strong correlations. Possibility of changing the particles polarization as well as almost
free tuning of the short range interactions combined with the trap geometry modi cations enables
unprecedented exibility in the study of the roton spectrum in dipolar gases ending with a recent
experimental con rmation of the phenomenon [35].

Droplet Recent experiments with highly magnetic dipolar atoms discovered a new self-bound
liquid state for atom number densities that 468 lower than in a helium liquid. The existence of

such dilute droplets was suggested earlier in the context of Bose-Bose mB&ura[the very rst
experiments, the three-dimensional condensate with long-range magnetic dipolar interactions and
tunable short-range interactions was quenched into the unstable regime from the MF perspective
i.e. attractive and repulsive forces were of the same order and almost canceled out each other.
A gas formed a spatially ordered collection of stable droplets with a higher density than usual
condensated6-99]. These quantum droplets are self-bound i.e. they are stable even without any
external trapping potentiaBB, 34, 99, 10(. One has to include beyond mean eld Lee-Huang-
Yang (LHY) correction, which scales as™, into the GPE which provides an additional effectively
repulsive term preventing the gas from collapsing to describe the droplet theoretically. The LHY
correction for dipoles is much stronger and includes some additional subtleties compared to contact
interactions 78, 101-103. Note, that in the dipolar community there is an ongoing discussion



whether LHY corrections account for all properties of droplets. In a new papd}, the authors
argue about that hypothesis.

In the case of Bose-Bose mixtures droplets were also predicted in lower dimeridaharj
the same footing of LHY corrections, which has a different form for 1D and 2D systems. For
dipolar atoms, the calculations are not as straightforward. In two dimensions the LHY term is
nonuniversal 106, whereas for one dimension it was calculated numerically for some parameters
of the system107]. Additionally, an analog of droplets stabilized by LHY term exists in the
so-called Tonks-Girerdeau limiLp8 (See Chapter 6), where the contact interactions are in nitely
strong.

1.4 Many-body physics

Itis possible to study many-body systems in modern experiments with ultracold gases distributed
between the wells of an optical latticég]. This way, with a help of tunable parameters of
interaction, using the Feshbach resonantds]09, and the properties of the lattice itself, one can
access in a controlled way vital models of condense matter physics - for a recent reviéij see |
Usually, such systems interact strongly. One needs an actual many-body description encoding the
information about all the correlations between particles, instead of the MF theory accounting for
mutual correlations between particles only partially by nonlinearity in a corresponding GPE.

Modern experiments entered also into the one-dimensional realm due to the cigar-shaped traps.
As the role of interactions in one dimension is special and tools from higher dimensions do not
necessarily apply for stronger interactions, theorists have been developed different techniques and
concepts 110. Many one-dimensional problems were solved by means of Bethe Ansatz (for a
review see]11, 117 and references therein). The historically earliest example is the famous Lieb-
Liniger model [L13 114 comprising ofN contact interacting bosons moving on the circle (see
Chapter 2.3.1). Their seminal analytical solution predicts two branches of elementary excitations,
which was also observed experimentally [115, 116]. There is the puzzling link between the mean-
eld solitons introduced in Section 1.3 and solutions of the underlying many-body Lieb-Liniger
model. More than a decade after the seminal paper of Lieb, a coincidence between the dispersion
relations of dark solitons and of so called type-1l elementary excitations from the many body
description 117, 118 has been noticed. The further relations between type-Il eigenstates and
solitons were presented in [119-127].

Little is known about the classi cation of the exact many-body eigenstates in one-dimensional
dipolar gas. For (quasi)-1D model with bosons interacting only by repulsive dipolar interactions the
lowest energy states resemble rather type- 1l excitations known from the Lieb-Liniger maggl [

The picture gets vague even more if one adds the short-range interactions to the nal mix. Particu-
larly interesting questions appear about the relationship between many-body eigenstates for such a
system and the corresponding approximated theory.



1.5 Thesis overview

The main goal of this thesis is to contribute to the better understanding in uence of dipolar
interactions on the many-body systems in constrained geometries. A lot of condensed matter
theories simulated in one-dimensional optical lattices deals with a very small number of particles
trapped in a single well. We will put special attention to stronger interactions that require an
extended description beyond the usual mean- eld approaches. In the end, we will also check the
applicability of the standard measurement methods used for large systems in the case where only a
few atoms are present in a probe. Without doubts, the dipolar and many-body physics abounds in
many interesting phenomena and only a few topics are studied in this dissertation. We organize the
work in the following way:

In this chapter, we present a brief review of ultracold physics with emphasis on dipolar
examples. We start with some basic facts about BEC. Then, we shortly discuss dipolar
interactions and their consequences. We mainly focus on one-dimensional examples. Finally,
we brie y recap some many-body aspects important from the perspective of this thesis.

Chapter 2 introduces the basic concepts and methods used in the later course of this thesis. We
discuss some general properties of the many-body system and two-body interactions, mainly
in the context of one-dimensional problems. Finally, we recall the mean- eld description of
ultracold gases.

In Chapter 3, we investigate two dipolar atoms moving in a harmonic trap without an
external magnetic eld. In particular, we study the anisotropic characteristic of dipolar forces.
Namely, we show that the internal spin-spin interactions between the atoms couple to the
orbital angular momentum causing an analog of the Einstein-de Haas effect. It is possible
to adiabatically pump our system from the s-wave to the d-wave relative motion. We also
observe anti-crossings of energy levels.

Chapters 4-6 focuses on atoms moving on the circumference of a circle. In particular, we
devote Chapters 5-6 to the study of the interplay between local and non-local interactions
for different polarization of dipoles in that geometry. We dedicate Chapter 4 for comparison
between mean- eld dark solitons and the lowest energy states for xed total momentum
of the many-body system of weakly interacting bosons for either contact or purely dipolar
interactions. Solitonic features like phase jumps and density notches emerges even in the limit
of vanishing interactions. We show that these properties are simply effects of the bosonic
symmetrization whose consequences we study in dynamics and systems where interactions
are relevant.

In Chapter 5, we study bosons interacting via attractive short-range and repulsive dipolar
forces (side-to-side con guration) both in weakly interacting regime as well as the regime
beyond the range of validity of the Bogoliubov approximation. We show that the lowest
energy states with xed total momentum can be smoothly transformed from the typical
states of collective character to states resembling single-particle excitations, in particular, the
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celebrated roton state. We realize transition by simultaneous tuning short-range interactions
and adjusting a trap geometry.

Chapter 6 concentrates on studying the ground-stdte lebsons interacting via repulsive
short-range and attractive dipolar forces (head-to-tail con guration). Notably, we observe a
transition between droplet-like and bright soliton-like states at the border of net attractive and
repulsive interactions for a small number of atoms and stronger interactions. In the second
part, we propose a new version of the GPE without LHY corrections for larger systems. We
provide with a diagram showing novel droplet-soliton transition.

In Chapter 7, we investigate a very simple microscopic model of two-body wave-function
diagnosis based on atom-light interactions. We study an absorption of a weak pulse by two
identical atoms moving in a trap. Especially, we study the in uence of pulse properties on
the results. We report a signi cant impact of pulse duration on the resulting one-photon and
two-photon absorption probabilities.

Chapter 8 recaps the thesis pointing out its main achievements. In the end, we discuss future
perspectives concerning the results presented in this dissertation.

10



Chapter 2

Theoretical framework and methods

In this Chapter we introduce basic theoretical concepts and analysis methods used in this thesis.
We start with a few general properties of a many-body bosonic system. Then, we shortly discuss
two-body interactions- short-range potential in an ultracold limit and dipole-dipole forces in a 1D
space. After that, we turn our attention to atoms moving on a circumference of a ring as it is the
main geometry considered in this thesis. We recall the seminal Lieb-Liniger (LL) model and shortly
discuss the ideal gas spectrum afterward. Finally, we present methods used in this thesis to access
spatial properties of a many-body system on a ring.

In the second part of this Chapter, we brie y discuss the mean- eld description of ultracold
bosons. We recall the famous Gross-Pitaevskii equation (GPE) describing a macroscopically occu-
pied orbital. Some of the energetically low excitations of the ultracold gas are aptly characterized by
the well-known Bogoliubov approximation. Here, we present a version of it with the conservation
of particles number.

2.1 General properties of many-body systems with two-body
interactions

2.1.1 Many-body Hamiltonian in second quantization

We examine bosonic systems, which consist of N atoms. Any state vector describing such
system is symmetric under exchange of any two particles. In the framework of second quantization,
one uses a Fock state representation instead of a full many-body wave-fungiign; :::;; XN )
with x; standing for the position of ainrth particle. A single Fock state is usually expressed as
jfngi = jno;ng; i wheren; is an occupation number of a single particle stafec) from a
proper sin%le-particle basfs j(x)g. We study only models in which the number of atoms is
conserved, n; = N.Allvectorsjfng;i form an orthonormal basff ng;ig for a symmetric

i=0
subspace with xedN of the Fock space. In this language, a general bosonic staté\witarticles
is a superposition of Fock states, namely:

- . x - -
j i= cjfngi (2.1)
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with ¢ standing for the expansion coef cients.

We assume systems considered in this thesis dilute and ultracold. Therefore, we can restrain
interactions in our analysis to only two-body leveind only use a simpli ed version of the
interaction potential. The presence of ultra-low temperatures also justi es our interest in the lowest
eigenstates of the system in the later parts of the thesis.

In this case, the many-body Hamiltonian in second quantization can be expressed in space
representation as

yA 2z
B = o|><“y(><)|41“(><)+E dx  dx%Vx)Y(x9u(x  x9"(xY (x); (2.2)

where “(x) ("Y(x)) are the standard Bose eld anihilation (creation) operators de ned as

A X
(x)= i(X)& (2.3)

A X
Y(x) = ()8 (2.4)
[
with & (aiy) bosonic anihilation (creation) operators. We remind that the Bose eld operators obey
the following commutation relation
h [
")) = o x9: (2.5)

The single particle Hamiltonian can be written in general as
=2,
Hi(x)= —r “+ Ui(X); 2.6
1(x) = 5t 24 Ui(x) (2.6)

wherem stands for a single particle mass dog(x) for the external (including trapping) potential.

In this thesis we mainly study the interplay between short-range and long-range interactions,
therefore two-body interaction potential can be decomposdd(as x9 = Usr(x x9 +

Ur(x  x9. We return in shortly to discuss speci ¢ forms of potentials considered in this work.

2.1.2 Average energy

We want to express the average energy of any state of the sysiedescribed by Eq. 2.2. We
assume the absence of any external poterdiglk ) = 0, that holds for most of the cases in this
thesis. By straightforward calculation bfjHj i, one can show that it equals to

D E 2 Z Z

i dxh'\y(x)rz'\(x)i+% dx dx°Go(x;xYU(x  x9; (2.7)

where
Ga(x;x9 = h Y(x) Y(x9 ( xY( x)i

INote, that even in this regime sometimes it is necessary to include three-body or even more complicated interactions
into the considerations, for example near the collapse of BEC.
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is the second-order correlation function. The rst term in Eq. (2.7) has more familiar interpretation
in the momentum space, where it can be written as:

~N ‘ dkk?P (k)

2m

with P(k) = Nimﬁaki, calculated in momentum space, standing for a probability of nding an
atom with a momenturk. From the above we see the important rol&a{x ; x% andP (k) in a
guantum state characterization.

2.2 Two-body interactions

Actual interparticle interaction potential, depends on many microscopical details e.g. type
of atomic element, the internal quantum state of an atom or type of con nement trapping atoms,
to name only a few. Depending on scienti c community the most popular choices include Aziz
potential, Lenard-Jones potential, van der Waals potential, hard-sphere potential, gaussian potential
and many different.

In this thesis, we mainly focus on physical phenomena introduced by dipolar forces between
atoms with a permanent magnetic (electric) moment themselves or by the interplay between them
and short-range interactions. We brie y present both of them in the following subsections.

2.2.1 Short-range interactions

We are entitled to consider only interactions on a binary level due to the diluteness of an
ultracold gas. In standard experiments with quantum gases, a peak number density is typically
aroundn  10°°m 3 (ve orders of magnitude smaller than in the air). A typical distance between
particlesl is larger than the characteristic range of interactians

N 3
1
r l=n3s= — 2.8
v (2:8)
whereV is the total volume of a system. We assume non-zero interactions only if any two atoms in
an ensemble approach each other a distance smaller thédoreover, in the ultracold gases regime
i.e. the low energy regime, the typical single particle momenitumvery small, namely:
k % (2.9)
Outcomes of the scattering theory describing accurately properties of two-body interactions simplify
under the above conditions. For all models of local (not dipolar etc.) interparticle interactions the
only nonvanishing contribution to the scattering amplitude comes from the s-wave channel and it is
characterized by a singleindependent parameter, the scattering lergtiThen, instead of using
the actual potential one can consider a delta function pseudo-potential

Ups(X) = gap (X); (2.10)
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where

4 "'Zas .
m .

Q3D = (2.11)

In the literature, one can nd many different studies on different systems with interactions given
by Eq. 2.10 eg. the Lieb-Liniger model that we describe later in this Chapter. Before that, we want
to mention a few remarks about this useful, yet simpli ed effective potential model.

1.

Note, that the scattering length fully determines low energy properties of the true potential. It
shows whether the net local interactions are repulsiye ( 0) or attractive §s < 0). One can,

in principle, calculate the unique value of the scattering length for any real atom/molecule.
It is called the background scattering lengtly. It requires to include all details of true
potential making its calculations a dif cult and a demanding task. Note, that there exist
species withapg < 0, eg. Lithium. The scattering length also depends on the dimensionality
of the system.

. The real advantage of ultracold gases as a tool to test concepts from different elds of physics

is associated with the existence of the phenomenon known as the Feshbach resonances
predicted theoretically in the 70s. It allows tuniagin experiments to any desired value
including ipping its sign. Starting from 1998 applying the Feshbach resonance is a standard
implement in the experiments with quantum gases.

. In the case of 3D problems within the many-body approach, eg. the exact diagonalization,

Eq. (2.10)would fail in the prediction of the system properties. The best known example
was given in the case of two ultracold atoms in the seminal paper by Bush E2gl. Pne

has to use the regularized version of £2.10) In lower dimensions, one does not need such
regularization.

. Atoms scattering in the presence of an external con nement introduces corrections to the

scattering length and the con nement induced resonah@@ [L31]. The scattering length
becomes a function of con nement parameters. In Chapters 5 and 6, we only include very
simple correction to the value of the scattering length that is given by the normalization factor
of the wave function Ansatz in the direction of tight con nement.

. The scattering theory shows that in the case of dipolar interactions all partial waves, not

only s-wave, contribute to the scattering amplitude. Thus, the pseudopotential from Eq. 2.10
cannot be used. The above unhide the long-range nature of dipole-dipole interactions.

2.2.2 Dipolar pseudo-potential

In Chapters 4-6 we discuss the case of polarized atoms for which the dipolar potential takes the
form from Eq. (1.3):

Cuql 3cog
4 jx1 xg®

Ugd(X1 X2) = (2.12)
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where is the angle between the direction of polarization and the relative position of the patrticles.
We also con ne atoms by a tight harmonic potential:

Ui(yiz) = Jml 5 Y2+ 2 (2.13)

The space i direction is assumed to be in nite. Then, assuming that and2 direction any two
atoms are in the ground state of the harmonic oscillator, a two-body wave function reads:

( x5;Xx2) = o(z1) o(z2) oly1) o(y2) ( X1;X2); (2.14)
where g is the Gaussian wave function:
| 14

2 exp y?=(21%) (2.15)
?

o(y) =
with [, = P ~=(m! ,) being the transverse oscillator width. The necessary condition underlying
this approximation is that both, the thermal enekgy’ and the interaction energy #dirtection,
are much below the energy of the rst excited state in the transverse direction. Under the above
approximation, we can reduce full three-dimensional dipolar potential (as well as contact potential)
to the effective one-dimensional dipolar potential. Formally, it can done by integrating out 'freezed'

degrees of freedom:
VA

Ugd(X1 X2) =  dyidy2dz1dzz o(z1) o(z2) o(y1) o(y2)Udda(X1 X2) (2.16)

The expression given by ER.16)can be calculated in several steps including switching to centre
of mass and relative coordinates, using polar coordinates and a proper change of v&r&gie2{
134]. Finally, the effective potential in real space is expressed by

Uag(x) = Cas igg (x=12) + 3 (x2lo) (217)
where b o
Ugg(U) =2juj 2 (L+ ud)e’=2Erfc juj= 2 (2.18)
R
with a condition  }ugq(u)du = 1 and

_ Cgg(1+3cos(2))
Cyq = 3213 (2.19)

Hereafter, we absorb the contact interaction term from(Ed.7)to short-range pseudo-potential
from the previous subsection 2.2.1, ildyq(X) = CyqUgq (X=I2). In Fig. 2.1 from p4] we present
the most important features ofig(x) (Cqq > 0). For large distancesit behaves Iikexl3 and its
characteristic range (width at half maximum) scales likeNote, that from the mathematical point
of view the effective dipolar potential in 1D is non-local rather than long-range.

The Fourier transforri [ ] of the Eq. (2.17) reads [57]:

k2|2 _ k2|2
Vea(K) = 4 Cyq ??ekz'g‘zEl 2’-’ % ; (2.20)

where~k is the momentum associated with thelirection ande1(x) is the exponential integral.
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Figure 2.1: Effective potential in position representation. Hete,/ ugq. For large distances it
behaves Iikexl3 and its characteristic range (width at half maximum) scalesl}ik§Copyright
IOP Publishing. Reproduced by permission of IOP Publishing. All rights reserved [54])

2.2.3 The effective potential. Realistic vs. periodic

As we replace the ring with a box with periodic boundary condition, the effective interaction
potential used in Chapters 4-6 is only approximate model of the physical interactions. In reality
particles trapped in the ring-shaped potential would interact via interaction potential depending on
the shortest distance between them, the length of a chord. We explain the qualitative differences,
between the physical interaction potential and our model in Fig. 2.2. Below we give details how
our modelU (x) arises, and compare it with the real potential. We use the syhljof the
potentials in the position representation ahdor potentials in the momentum space. Below we
denoteU;p = Ugr + Uyg.

In a real experiment, when space needs to be nite, atoms are trapped in the ring shaped
potential (as we want to avoid breaking translational invariance). Therefore they interact via
potential depending on the length of the chord (see left panel in Fig. 2.2):

L . X

In this thesis, from technical reasons, we model such situation by a box of lengith periodic
boundary conditions. We introduce effective potential, which includes interaction with all imaginary
copies of system: X
Ue (X) = Uip(x + nL) (2.22)
n2z
Therefore, the effective potential in momentum representatidf i&k) = ROL e U (x)dx
(which satis esVe (k) = F (U1p)(K) as well).
In all cases of this thesis, our approximation of the effective potential is well justied. A

suf cient conditionisl L. In Chapter 5.A we will show a comparison between both approaches.
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Figure 2.2: Schemes to discuss the relations between the real potential (left panel) and our ap-
proximation (right panel). Physically, the interactibp,g between two atoms depends on the
shortest distance between them, i.e. the length of a chord. From technical reasons we approximate
the ring with a box with periodic boundary conditions. In consequences the atoms in our model
interact along the short and long arcs connecting them. As we use in computation the Fourier
transform there are small contributions to the interactions energy coming from the copies of our
system shifted by the multiple of the length of the circleThe resulting potential is denoted as

Ue . As discussed below, the differences between the real interaction potégiéahnd our model

Ue are very small.

2.3 Atoms moving on a circumference of a ring

In this thesis, we mostly deal with nite size systems. One of the most common choice of
a boundary for a problem is Periodic Boundary Conditions (PBC). In (quasi)-1D systems this
may be seen as equivalent to a ring not only for the ideal gas case or point-like interactions but
also to nonlocal interactions, in particular, dipole-dipole forces as in this thesis. The PBC implies
translational invariance of the system, therefore the total momentum of the system consibting of
atoms
e
K= i~ —
., @x
commutes with the Hamiltonian. Hence, all eigenstates may be numbered by the value of their total
momentunK . We denoté-th eigenstate with the total momentutnand withN atoms as:

(2.23)

Nk = NGK (2.24)
In analogy with nuclear physic4d.35 136 and following [119 12Q we call the lowest energy
states of a given total momentum of the systém Q), the yrast states.

Below, we present a short introduction to many-body ring systems put in a speci ¢ context of
this thesis.
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2.3.1 The Lieb-Liniger model

The famous Lieb-Liniger modellfl3 114 describes particles moving on a circle of lengith
and interacting with each other by delta potential. The Hamiltonian reads

2~; X @@}( ‘y X
i=1
and we consider here onfy> 0 cases. The eigenstates of Eg.25)can be found by the Bethe
Ansatz and by imposing PBC on the system as was done originalbiB).[Let f kg = Kk1;:::; kn

be an ordered set of N quasimomenta. Then, the Bethe Ansatz in our case can be written as

, X P
Nk (0= Ape 1% (2.26)
P

X xj) (2.25)
1i<j N

wherex = ( X1;:::;Xn ) denotes a position vector df particles. The summation in E¢§2.26)
extends over all permutatiofs of setf kg andAp are superposition coef cients depending®n
The quasimomentig are real (forg > 0) and8;gj ki 6 k;j. They fully determine the eigenvalues of

™ : L ™ ,
energyE = % kZ with a constraintimposed by the total momentin= ~ k; conservation.

1= i=1
With all that, one can derive a set of transcendental equations of the following form:

X
kj L=21 j + (kj kn); (2.27)
n=1
where (x) = 2arctan % , andl; are integers (half-integers) if the number of partidies

is odd (even) an@ig;!; 6 ?j . Notice, that one set dfl g; parametrizes exactly one eigenstate.
Hereafter, we always assume tha< | , <:::<| y aswellak; <k, <:: <k n.Aswe see
Eq. (2.27)decomposes for an ideal gas situation with a well-known solution for a single-particle
momentur and phase shifts due to the scattering events introduced by interactions. The ground
state of the system is given by a set [111]:
flgsg= N2 1; N2 3;:::;N2 ! : (2.28)
In his seminal work114], Lieb pointed out that all excitations of the system are combinations

of members of two families of elementary excitations. We call an excitation type-I if one takes the
highest (lowest) valuéy (I 1) fngincrease (decrease) it pyvherep stands for gn integer. This

operation results in a new setj' determining a new set of quasi momemkaj . The system

acquires p= kn+p kv ( p=kn p ki) of momentumand E =( p)®+ 2N-j pj of

energy. As an example we chodsg andp = 1, which gives:

. N 1 N 3 N 3N 1+2p
- y y ey 2 y 2

J 5 5 (2.29)

In the limit NL—g I 0such excitations are equivalent to Bogoliubov quasi-particles [114].

%Note, that for the ideal gas scenario the intedgrsom a seff | g do not necessarily have to be distinct, as well as
real single-particle momenta.
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Figure 2.3: Schematic presentation of two branches of elementary excitations for the Lieb-Liniger
modelforg! 1 andN =7 (top) and its energies as a functiontofforg! 1  andN =11. In
this gure, the total momentum of the systefnis denoted by, a set of integer§l;g by fljg

2

with Iy changed fotr . The momentum and energy units éﬁé and =, whereR is the size
of the system. (Copyright (2011) by American Physical Society [120])

The second family of elementary excitations, called type-Il excitations or hole excitations,
comes from changinj (1<j <N )toln+1. As aresult, the system gaing = ky  k; if
NM <j<N ( p=ki kjifl<j< Nyofmomentumand E = 2N-j pj ( p)°of
energy. As an example we chodse 1 (j = N 1) resulting in:

g N 1 N 3 N 5N 1IN+1

= 2.
j 2 2 222 (230)

In the limit '\I'_—g I Othey correspond to dark solitons from Gross-Pitaevskii equation, not only by

matching its dispersion relation [118], but also by matching its spatial properties [120, 124, 125].
We use Fig. 5 from12Q (see Fig. 2.3) to explain two types of elementary excitations

graphically and to show a typical spectrum of the nite-size system. For $tnalo elementary
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branches are close to each other. These part of the spectrum corresponds to the phonon quasiparticles.
We also notice, that whenevilr = p N, whereK has an integer value (i% units) andp

denoting an integer, the spectrum starts to resemble itselif foN . For nite systems on the

ring it suf ces to consider the eigenstates only ugkteN = 1=2. This comes from the presence

of the so calledimklappprocess 114. Any eigenstate with a total momentug®= p N + K

(wherep 2 Z; N7 K N7) may be understood as the state with a total momertuwith a

shifted center-of-mass momentum. Note that such shifting does not change the internal structure of
the state.

2.3.2 Noninteracting gas of bosons

We investigate the system in the simplest case of the ideagga¥,. In this case, every Fock
state in the plane wave basis

f1(9g= pet (2:31)

is already an eigenstate of the Hamilton{d@r25) The energy of the Fock stgtei = jn; ::ng::ng i

equals
222 %

L2 k=1
In analogy with the previous subsection, we may distinguish two characteristic types of excita-
tions.The rst ones are the elementary excitations obtained from the groundrgiateN i by
taking a single atom to momentui, so the total momentum is carried by a single particle. The
spectrum is given by the parabdia= zl_—fK 2 which agrees with the Bogoliubov approximation
in a limiting case of vanishing interactions. This picture also corresponds with the Lieb-Liniger

E(n) = n k?; (2.32)

type-l elementary excitations.
The another important branch consisting of the lowest energy states at a given momentum,
i.e. the yrast states, can be constructed as follows. One has to identify which set of infegers

minimizes the kinetic energ§2.32) but under constrained total moment#m= kng. Asa
k=1
result, the yrast state with momentudnis a state witiK atoms occupying the plane wave with

momenturrk = 1, namely the orbitalslT €2>L | and the rest of them remain in the sta%ﬁ
corresponding t& = O:

jN;K; Oi :=jnp=N K;ni=Ki: (2.33)

The spectrum of the yrast states equals %}K . The Eq.(2.33)tells us, that the yrast states are

ratherthe collectiveexcitations as obtained by exciting simultaneouslatoms.

These two branches, depicted in Fig. 2.4, are nothing else but the two branches of excitations
found by E. Lieb 114 but in the limitg! 0, both named elementary excitations in the literature.
Apparently this nomenclature looses sense in the linit 0, where the type Il excitations are
collective.
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Figure 2.4: The two branches of excitations of the ideal gas: the upper branch (blue solid line), with

energy given b = TZZK 2 corresponds to the single-particle excitations. The lower branch (black

dashed line), with energy-momentum relatibn= %K comes from the yrast states. Momentum,

as de ned in the text, is dimensionless.

2.4 Accessing spatial properties of a many-body system on a
rng

The main dif culty in describing a many-body system pertains nding its eigenstates. Including
interactions, this is a demanding task even for a model within classical physics, let alone a quantum
one with indistinguishable particles. Using the second quantization framework one can simplify a
problem distinctly. For a relatively small number of particles, an exact diagonalization technique
can be used to nd numerically exact solutions if an analytical solution is not known. In this thesis,
when we discushl > 2 problems, we use the Lanczos algoritht8T] for exact diagonalization.

We construct Hamiltonian matrices in a plane wave basis introduced in a previous section by Eq.
(2.31) We adjust, to ensure convergence of our solutions, a cut-off for a speci ¢ problem described
in this thesis in a way presented ib3g. Finally, we obtain ari-th eigenstate of xed total
momentunmK and number of particlel given by Eq.(2.24) Formally, its spatial representation
is denoted by

i 09 hxi s (2.34)

wherex = ( X1;:::; XN ) IS a position vector oN particles. In general, such a many-body wave-
function consists oN ! terms limiting possibilities of its spatial analysis.

2.4.1 Conditional single-body wave function

How to extract properties of a single-body wave-function from the many-body eigenstates
in the ring geometry? The naive approach would be to reduce the many-body density matrix by
tracing outN 1 atoms. This approach would fail — all eigenstates would be projected to exactly
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the same single-body uniform density, as a result of the translational invariance. The Authors of
the paper 124 have shown another procedure, in the spirit 89, which reveals the spatial
structures hidden in the eigenstates. One obtains a conditional single-body wave-function by means
of drawing remainindN 1 particle-positions. The position of the rst partickg is drawn from

the uniform distributionP (x1) = 1 =L. Then the position of the second oxgis drawn from the
conditional distribution, obtained by setting the rst argument of the many-body wave-function
as the parameter w&h the valne and tracing out the particless; xa4; :::; XN, i.e. from the
distributionP (x2) / | (X1; X2; :::;XN)j2dx3dX4::: dxy. The procedure is repeated until

the conditional single-particle wave-function is reached:

con 2N (k) 1 (X1 X2) TXN 13XN) (2.35)

Then, the probability distribution function of the last particle reads

POXN) /] con 2™ 1(xn)j? (2.36)
Note, that within the conditional wave function we have an access to high order correlation functions.
The only problem with this approach stems from the fact that calculating the marginal distributions
is an extremely demanding task even in the cases, where the analytical formulé@f()k) are
known [124].

2.4.2 Probing a multivariate probability distribution

In a measurement performed on the gablaitoms one obtains in fact an image of teth
order correlation functionl4(. We reconstruct the experimental-like measurement by drawing

distribution. Instead of the marginal distributions introduced in the previous subsection, we use the
Metropolis algorithm, based on the Markovian walk in the con guration spad#[to perform

such drawings. In each 'measurement’ we hilvpoints, as experimentalists have on CCD cameras.

We repeat this procedure many times, collecting con guratiog = X0 X'N from each

(i-th) shot. Due to the translational symmetry, the center of mass is a random variable with the
rotationally uniform distribution. To reveal any hidden correlations one has to appropriately align
the samples. We do it by rotating samples such that their centers of mass point in the same direction.
Because the problem has the topology of the ring, one can move to the 2-dimensional plane. Then,
the center of mass should be understood as a vector. We sketch it in Fig. 2.5. The center of mass
2D coordinates are given by:

L X 2X i
Xem = ——  cos —1
MTeN L
’ (2.37)
Y —L sin J
M7 9N .

To nd a 'ring' center of masxcu one should nd the intersection of a circle depicted in Fig. 2.5
and a ray with a direction determined by the center of mass vector.
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Figure 2.5: lllustration of the de nition of the center of mass (black thick arrow), being here a
vectorial sum of vectors (thin red arrows) pointing to the particles. The box with the periodic
boundary condition is here interpreted as a circle.

2.5 Mean- eld and Bogoliubov approximations

Although in this thesis we focus on actual many-body physics, i.e. we try to nd and analyze
eigenstates of a many-body system in a full manner, we sometimes compare our ndings with
approximate theories of ultracold many-body systems. In the next subsections, we shortly introduce
the mean- eld approach and the Bogoliubov approximation that is a rst step beyond the mean- eld.

2.5.1 Mean- eld approximation

Usually, a single Fock with almost all bosons occupying a single-particle state is the ground
state of an ultracold bosonic system. The appearance of a product state allows applying a so-called

mean- eld theory. Within it, the time-dependent Bose eld operat’é(s ;1) can be written as:

D E
“oct = NGt + xG) (2.38)

The mean value of the Bose eld operator is just a classical efd;t) witha normR dxj (x:t)j%=

No whereNy is the number of atoms in a macroscopically occupied orbital. The fgrmt)
describes uctuations of the Bose eld operator around its mean value. The uctuations have both
guantum and thermal origin and they characterize all atoms outside the macroscopically occupied
single-particle state.
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In the limit of zero temperature and weak interactions, we may assume that the quantum
depletion of a ground state is negligible, namily! N. Then, we can ommit the uctations
term in Eq. (2.38) In this limit, also short-range interactions take their effective form with
Usr(X) ! Ups(X).

The above assumptions make the energy, given byZEf), a functional of (x:;t) = j (x;t)j2.
We want to nd variationally (x;t) minimizin%its value, so that ful lls E([X?t) =0. We
additionaly impose the normalization conditiordxj (x;t)j> = N. Finally, we obtain an
equation, called Gross-Pitaevski equation, for a single-particle orbital describing the whole system

by:

z

. @cpe(X;t) ~2

~=2 7 = —r ‘+ +

i ot =l U1(x) dxUe (x  x9Y
This equation was presented for the rst time for contact interactions in the context of vortex
lines by E. P. Gross43] and L. P. Pitaevskii42] independently in 1961. Inclusion of the dipolar
interactions was done in 2000 by Goéral et 49][ In Chapter 1, we discussed brie y the most
important predictions made by Eq. (2.39) in the context of this thesis.

()% gee(x;t) (2.39)

Imaginary Time Evolution We present a very helpful tool called Imaginary Time Evolution
(ITE) for nding mainly ground states of Eq2.39) We always can decompose any eigenstate as a
sum of elements of a basis

X )
epre (X;t) = e BT L (x) (2.40)
k=1

whereEy denotes an eigenvalue of statg(x) andEy > E ¢ ;. We introduce the imaginary time,

namely by replacing ! i . With that, Eq. (2.40) becomes
X
ere(x; i)=e 177 e (B ED== (x): (2.41)
k>1

We see that as increases the ground state decays the slowest and remains signi cant even for
larger times. Note, that one has to properly normalize the state after each step as the ground state
also vanishes (see [57] and references therein for more information).

In this thesis we use ITE in Chapter 6 to nd bright solitons and droplet-like solutions. Both of
them are ground states. Note, that one can use ITE also to nd an excited state of GPE to some
extension, but it needs slight modi cations [57].

2.5.2 Number conserving Bogoliubov approximation

The well known Bogoliubov approximation stretches beyond the mean- eld theory. It describes
energetically low excitations by the concept of quasiparticles. In this thesis, we mainly focus
on small systems where the usual Bogoliubov approximation with inde nite particles' number
would be unjusti ed. In Chapter 5 we will use a number conserving version of the Bogoliubov
approximation introduced and explained thoroughly in the work of Y. Castin and R. Ddizh [As
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we use the plane waves we would like to write the Bogoliubov approximation in the particle basis.
For that, we deploy the following Ansat2] for the Bogoliubov vacuumK = 0) in a system
with N atoms: I

© N=2
jN; Oig / a 2 u—aka K jvaci; (2.42)
k>0 k
wherejvaci is the particle vacuum and
p p
Uk; Vk = k=Ex Ex=k =2 (2.43)
with E = k=2 and the Bogoliubov spectrum is given by:
S
k2 k2 N
K= 5 5 + vae (k) ; (2.44)

whereVe (k) is a Fourier transform of the effective potentldl (x). A single Bogoliubov
excitation with a total momentuid is expressed by:

iN;Kig / UKaoa)é +VKa%a k JN;Oig (2.45)
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Chapter 3

Two dipolar atoms in a harmonic
trap

We observe a remarkable progress in experiments with ultra cold quantum gases with only a
few atoms in a trap. These experiments are performed with cold atoms distributed between the
wells of an optical lattice. Many of them are prepared in the Mott insulator pi&82145 where
a well de ned, small number of atoms is con ned in each well. Another set of a few atoms in
a trap experiments is offered by the setting available in Heidelberg and InnsbrucB2abh46
where in the case of the latter highly magnetic erbium atoms are used. Detailed properties of such
systems crucially depend on the properties of atom-atom interaction. This interaction is best tested
if exactly two atoms are present. Early analytic predictions for contact interacting at@®s\jere
positively veri ed in precise spectroscopic experiments [147].

The dipolar interaction couples spin degree of freedom with the orbital angular momentum.
This leads to the well known Einstein - de Haas effect [40]. To observe this effect with chromium
atoms, where dipole - dipole interaction is just a perturbation, properly resonant magnetic eld
strength must be used48§. Of course, direct coupling to the orbital angular momentum is possible
for suf ciently strong dipole-dipole interactions. For the large systems, it was predicted using a
conventional mean eld approacti49. A simple case of two aligned dipoles was also considered
in this context [150].

Itis the purpose of this chapter to present exact analysis of the role of dipole-dipole interactions
for two atoms trapped in a harmonic potential without any external magnetic eld. The simplicity
of the harmonic potential allows separating the center of mass degree of freedom. What is more,
utilizing this symmetry we may construct the energy eigenstates using the angular momentum
algebra. What remains is the set of coupled radial Schrédinger equations linking components of the
wave function corresponding to orbital angular momenta differing by two units. Finally, we present
our results observing the Einstein-de Haas effect [40] analog.
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3.1 Center of mass and relative motion coordinates

Let us consider two identical atoms (fermions or bosons) of massoving in an anisotropic
harmonic trap with an angular frequenky= (! «;!y;! ;). The atoms mutually interacts by a
translationally invariant potenti®d (r1  r»), wherer, = ( X1;y1;z1) andr, = ( X2;Y>; 22) are the
position vectors of the two atoms. The Hamiltonian of such a system can be written in a compact
form as:

2 2
~ ~ 1
H= ——r? _—r3+-m?2 ri+r5 +U(r1 rp); 3.1
sm' T omt 2t 5 1t I3 (r1 r2) (3.1)
wherel 2= 121212 andr? = x?y? z? . Note that both the kinetic energy and the external

potential energy have the quadratic form. Therefore, above Hamiltonian can be separated into a
center-of-mass part and a relative motion pidrts Heym + H e With:

2 1
HCM = %r %+ ém' 2 R2

o : . (3.2)
Hel = ot 2 4 ém! 2 2+ U( 2r);

which can be diagonalized separately. HRre pl—é (r1+ r») is the center of mass coordinate
andr = 191—E (r1 rp) stands for the relative motion coordinate. We introduce somewhat unusual
factor of 2 for the symmetry. The eigenstates and corresponding eigenvalttkgpfre the well
known guantum harmonic oscillator solutions. The only possible new phenomena may be found in
the relative motion part of Hamiltonian, which is a subject of our studies in next sections.

3.2 Isotropic trap without an external magnetic potential

In this section we turn our attention to two identical dipolar atoms (composite bosons or
fermions) of a spin (a total angular momentum of an atbyy f,. We constrain our considerations
to the case of an isotropic harmonic trap with= (!;!;! ). In a following subsections we use
harmonic-oscil@tiunits, in which! is a unit of energy and the characteristic size of the ground
state of the trap - is a length unit.

3.2.1 Model

An interaction potential (r) is a sum of a short randés(r) and a long range magnetic dipole
- dipole interactiorJyq(r) potentialsU = Usg + Ugq. The magnetic dipole - dipole interaction
potentialUgq(r) can be expressed in the following form:

Uga(r) =

\2
e ie E, 3R, n)(Fp n) (3.3)

wheren = 1:17:51 o stands for the vacuum magnetic permeability,indicates the Bohr
magnetong; is the Landé g - factor an is the total angular momentum of an atom (spin vector).
Thus for the atomic spin quantum numlbehalf integer we have fermions and folinteger we

have bosons.
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We modelUsg(r) as a spherically symmetric barrier written as [151]:

( 0 forr>b =100 ag

Usr(r) = (3.4)
1 for r  b=100 ag;

wherer = jrj andag is the Bohr radius. The scattering lengtffor a scattering process of a single
particle on an in nite spherically symmetric potential barrier is equal to the radius of the barrier
i.e. b= a. Later in this work, a value db is determined by the numerical calculations for the
dysprosium atoms [152]. For differebgr models see i.e. [129, 150, 151, 153-155]).

After introducing our model fobJ(r) the relatvie motion part of Hamiltoniafre takes the
nal form as:

1 1 p_
Hiel = 51 2+ 5r2+ Usa(" 21) + gr%"'[F1 Fo 3(F1 n)(F2 n) (3.5)
'(I}'he strength of the dipole - dipole interaction is characterized bygdhe Lép?i Note that
3 is a unit ofgag.
3.2.2 Solution

In order to investigate the relative motion of the two atoms we observe that the total angular
momentum is conserved:

[F+L;Hrel] [J;H]=0 (3.6)

whereJ stands for the total angular momentum of the relative motion which is a sum of the total
spin operatoF = F1 + F, and the orbital momentum operator of the relative motion of the atoms
L. The spherical symmetry of the system means that it is convenient to solve the relative motion
problem in a total angular momentum basis. An Eigenfunction of the system in this basis reads:

. X X
migey= " @mtomi ey = T M ey jimif
I:f I:f

it oy cI™ifm myi

Im,fm ¢
I:f myimg
mj+ms =mj

(3.7)

Herej denotes the total angular momentum quantum numbemgritie magnetic total angular
momentum numbet,andm,; stand for the orbital momentum and the magnetic orbital momentum
qguantum numbers respectively. The total spin and its projection values are indicdtethtyn;
andCIj,fnml"fmf denotes Clebsch - Gordan coef cientiby. For a givenj andm; the consecutive
Eigenfunctions are enumerated by the 0; 1; ::: number ancaLmj d indicate constant coef cients.

The choice of our basis allows us to reduce a complicated three dimensional problem to the set
of the radial Shrédinger equations fon with givenj, |, f . Any coupling between the equations
may only come - in the case of spherically symmetric trap - from the dipolar part of the relative

motion Hamiltonian. We are now interested in the result of acting witiheoperator on a single
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state ’},m if (r). In order to calculate this it is convenient to rewrite the dipole - dipole interaction

potential in terms of the ladder operators:

1
Ut = 9 2 (F1Fo +F1 Fou)+ FiuFo, 3(Fuen + Finy + Fin,)
r= 2 (3.8)

(F2+n + F2 n+ + FZan)]

with:
- r 2
— X+ Iy P l !
M+ = 5 = . 3 Yi(ih)
X iy 2 1/ .
= = —Y. :
A 2 g G
. z_ 747 o(.. ) (3.9)
2T T 3 1Y
Fi = Fx+iFy
F =F iFy

HereY,m'( ;' ) denotes a standard spherical harmonic in the spherical coordinates. Using
(3.8), (3.9), spin operators properties and the well - known formula for the product of two spherical
harmonics (see for instance [157]) it can be shown that:

. X .
. . OfO
g 1= F7 o M0 (3.10)
10f 0
with the following selection rules:
%=1+ | 1=0; 2 (3.11)
fO=f+ f f=0; 2 '

The above result might be understood by the fact that the dipole - dipole interaction operator is
symmetric with respect to the exchange of the two particles. Thus it does not change a symmetry
of the given Lm if (r). A value of the scalar coef cient o0 is expressed by a product of Clebsh
- Gordon coef cients determined by the standard angular momentum algebra.

Knowing (3.10) we are able to nd the radial Schrédinger equation for ﬂﬁe(r) r (r)

by the straightforward calculation:

1 g
2dr2z "

22 o D e 8T = g 1
|10:f 0
(3.12)
whereE‘}] is an eigenvalue. The short range potentlgk(r) used in this chapter is incorporated in
the boundary conditions, namely bﬂf (r)=0forr b
As can be seen in (3.12) in order to nd é!f (r) one has to solve a system of the radial
Schrédinger equations for a xed total angular momentum numbéiote that the number of

equations in the system is determined by the maximum value of the totalfgpin= f1 + fo.
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3.2.3 Main results

Solving the system of the radial Schrodinger equations introduced in the previous subsection
completes the full characteristic of an eigenstaﬂ%j (r) with anyj, m; andn. In particular, we
are interested in the case with the total angular momentan®, because it turns out that the
ground state of the systemjis= O state for allf; = f, > %

From the angular momentum algebra we also deduced that for an eigenstgtewitithe
total spin number is equal to the orbital quantum numberlie. f. Thus for such states the
corresponding coef cient matrix ;«; o reduces to the o matrix. We calculate them for the
various atomic spin values i.é; = fo = %; 1; % and%. Our results can be found in the Appendix
3.A.

Knowledge of the jj%; o coef cients allows us to solve numerically the system of the radial
Schrodinger equations of the form presented in (3.12). We use the multi-parameter shooting method.
We set théb = 0:04in the harmonic oscillator units. For the dysprosium-like atoms it corresponds
tothe trap frequency 2 3:2 kHzand consequently tgyg = 0:0006in the harmonic oscillator
units. Our system admits two control parameters that may be changed by experimenters. Note that
thegqgq in the harmonic oscillator units depends on the trap frequengyiﬁso itis tunable. One
may also change the scattering lenggtby the optical Feshbach resonancEsg-161], so that the
bvalue in the harmonic oscillator units may be kept constant while one changes the trap frequency.

In Fig. 3.1 we present the eigenvalug8 with n = 0; 1; 2 as a function ofjyg for atoms with
different spins. For atoms with the sfin= f, =1; % and% we consider only solutions for the
even orbital angular momentum quantum numbén the case of odtiresults are qualitatively the
samé.

For spin atoms the energy values rise very slowlygag rises. The radial part of 2°1(r)
is simply the 9%(r), so the expected value of the orbital angular momentum operaforis
constant and equalL.2 =2 for all n. In fact, we checked that fo} atoms the ground state of the
relative motion is the lowest state fpe= 1. To understand this a bit surprising nding, we refer
to the results from the Appendix 3.A. In this case, the crucial thing is that for#pi:rticles the
coef cient matrices are of dimension one. It means, that there is no coupling between different
states and the sum in Eq. (3.12) reduces to a single term. Then, it can be shown,jtradfanly
the triplet state has the non-zero positive coef cient indicating the repulsive character of the dipolar
interactions. On the other hand, the only non-zero valued coef cierjt fol state is negative and
dipole - dipole interaction is attractive.

For the higher spin values we observe more complex behaviour. First of all, the energy values
forn = 0; 1and2 are highly dependent on the valuegafi. For low values ofjyq eigenvalues
vary slightly, then for higher values they decrease rapidly. We observe also the presence of anti -
crossings between consecutive lif€¥ gqq) accompanied by changes of the? . This is due to
changes in the structure of the radial part of eigenstates. From the (3.12) we notice that the radial
part of an eigenstate is a linear combination of th&(r) where in this case2 f 0;2;:;;2 fg.

1 Note that one has to assure a proper bosonic (fermionic) symmetry of the total wave function, which is a product
of the center of mass wave function and the relative motion wave function. For instance, dnedaéae motion state
has to be combined only with the center of mass state with the even (odd) parity for bosons (fermions).
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As thegyq rises the weight of each?' (r) function varies i.e. values @” coef cient varies. For
instance, we see that for logiy the ground state consists of almost only the s - stef&(r)),
whereas as we increase the trap frequency, contributions of the functions with lhigbet The
ground state starts to "rotate”. This feature resembles the Einstein - de Haas4fealthough it

is caused only by the internal spin - spin interactions between two atoms without any in uence of
external elds.

Moreover, as values ai®® for | > 0 grow anda®® decreases also mutual orientation
between the atoms starts to favour attractive regions of the DDI over repulsive regions. For the spin
fi=1,= % atoms, such a behaviour is impossible as all three angular parts of the eigenstates
are multiplied by the samab®® 990(r) expression which is almost being unchangedqsises.

This fact explains qualitative difference between the dependence of the eigenvalyggamspin
1 and higher spin values.

To understand deeper the underlying spatial mechanism, which is responsible for a steep
decrease of energy for higher spins we use an example dfitkef, = 1 case, which is the
simplest one where the effect occurs. Asjfor O the total spirf cannot be higher tha? the only
possible values of orbital angular momentum@end2. Let us consider a situation, whem =0
(thus alsam;=0), what means that spins are antiparallel. One can notice that for state with well
de ned orbital angular momentuir= 2, the value of average energy of dipole-dipole interaction
is positive and fot = 0 it is equal to zero (because of the shape of spherical harmonics). Attractive
interaction can dominate only when the system is in appropriate superposition of states With
andl = 2 (see Fig. 3.2). This statement appears to be true in genergl =f@ the value of energy
of states with the well de ned orbital angular momentuia always positive (or equal to zero for
| = 0). This is the reason, why decrease of the energy does not appéarfof, = % - asthe
maximum spin i§ = 1, for given parity of spin function there is only one possible orbital angular
momentum.

Fig. 3.1 also illustrates that the bigger atomic spin is, the lower trap frequency is needed to
observe above effects. In addition, the effect of changes in the expected value of orbital angular
momentum is stronger for larger atomic spin values. It seems that at least it is possible to check our
model experimentally using the system of the dysprosium atoms Wit%ltbpin.

The nature of anti - crossings in Fig. 3.1 can be explained by Landau - Zener thé@ri1 63
as depicted in Fig. 3.3. As an example we u%esbin atoms. A composition of the eigenstate
corresponding to the eigenvallg (gqq) is not conserved along given energy line, but it propagates
along straight lines upward or downward. This type of effect was already observed by Kanijilal et
al., although for a simpler system consisting of two aligned dipoles [150].

3.2.4 Results for different barrier width and one control parameter

In the previous subsection we manipulated the trap frequerayd the scattering length
to tunegyqy and keepb value constant at the same time. Here, we discuss how the results for
eigenvalues depend on the hardcore potential widiks an example we use spéﬁatoms. For
different values of the atoms spin we obtain similar behaviour. In Fig. 3.4 we plot eigenvalues of
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Figure 3.1: EnergE? vs ggg and expected value of orbital angular momentum operatér
for then = 0; 1; 2 and atoms of spifi; = f, = %; 1; 3; 2L, The black solid line represents
the ground state, the red dashed dotted line and blue dashed line indicate rst and second excited

states respectively. The insets magnify the anti - crossing area. Note different horizontal scale for

f1=f2= %
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Figure 3.2: Shape of the angular parts of the wave functionsifor 0 andm; = 0. The blue
region indicates the negative value¥sf. As spins are antiparallel, for the states with the well

de ned orbital angular momentum repulsion dominates. To reveal the attractive interaction, a
superposition of the states is needed.

the lowest three states as a functiorggf for three differenbvalues. The results are qualitatively
the same. We notice that the lowis, the faster anti-crossings occur in the energy levels. This can
be explained be the fact thatlagalue rises the contact interactions are getting stronger. This means
that alsogyg has to be bigger in order to observe effects caused by the dipole-dipole interactions.
The analogue of the Einstein - de Haas effect also occls ifhot kept constant agyg rises
i.e. trap frequency rises. In Fig. 3.5 we plot eigenvalueshartd of the lowest tree states as a
function ofp T". We observe anti-crossings of the energy levels and corresponding chahbés in
which are very similar to those obtained in the main text. Nevertheless, it should be pointed out
that in this case the effect is rather tenuous and thus harder to observe than in the case with constant
b. Consequently, to make the effect more visible, the plot is generategfaalue much higher
thangqq of typical atoms of% spin.

3.2.5 Conclusions

Motivated by experiments under developme?8, [32, 96, 164 we based our calculations on
dysprosium parameters. Our model of the dipole - dipole interactions between two atoms reveals a
non-trivial dependence of two atoms in a harmonic trap system on the trap frequency. We showed
that increasing the system undergoes an analog of Einstein - de Hass effect. Such a behaviour is
a result of spin - spin interaction and its coupling to the orbital angular momentum. We show a
possibility of adiabatically pumping our system from the s-wave to the d-wave relative motion. The
effective spin-orbit coupling occurs at the Landau - Zener anti-crossings of the energy levels. Our
results may be checked experimentally for the dysprosium atoms. Of course, proposed model is
oversimpli ed in this case as dysprosium atoms are not exactly spherically symmetric [152].
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